

JAVA FOR BIOINFORMATICS AND
BIOMEDICAL APPLICATIONS

JAVA FOR BIOINFORMATICS AND
BIOMEDICAL APPLICATIONS

by

Harshawardhan Bal
Booz Allen Hamilton, Inc., Rockville, MD

and

Johnny Hujol
Vertex Pharmaceuticals, Inc., Cambridge, MA

^ Spri ringer

Library of Congress Control Number: 2006930294

ISBN-10: 0-387-37235-0 e-ISBN-10: 0-387-37237-7
ISBN-13: 978-0-387-37237-8

Printed on acid-free paper.

© 2007 Springer Science-HBusiness Media, LLC
All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer Science-t-Business Media, LLC, 233 Spring Street,
New York, NY 10013, USA), except for brief excerpts in connection with reviews or scholarly
analysis. Use in connection with any form of information storage and retrieval, electronic
adaptation, computer software, or by similar or dissimilar methodology now known or hereafter
developed is forbidden.
The use in this publication of trade names, trademarks, service marks and similar terms, even if
they are not identified as such, is not to be taken as an expression of opinion as to whether or not
they are subject to proprietary rights.

Printed in the United States of America.

9 8 7 6 5 4 3 2 1

springer.com

Contents

Foreword IX
Introduction IX
Background and history IX
Interfaces and standards X
Java as a platform X
The future XI

Preface XIII

Chapter 1 1

Introduction to Bioinformatics and Java 1
The Origins of Bioinformatics 1
Current State of Biomedical Research 3
The cancer Biomedical Informatics Grid program 6
caBIG™ Organization and Architecture 7
The Model-View-Controller Framework 9
Web Services and Service-Oriented Architecture 10
CaGrid 11

Let's look at each of the tools in turn and understand how they sub
serve or address a small component of the bigger research problem. 14
CaArray 14
CaWorkbench 16
RProteomics 17
cPath 17
CaTissue Core, caTissue Clinical Annotation Engine and caTIES...18
CaTissue Core 18

Summary 20
Questions and Exercises 21
Additional Resources 21
Selected Reading 23

Chapter II 25

VI

Introduction to Basic Local Alignment Search Tool 25
The Purpose of BLAST 25
Performing a BLAST Analysis 27
Developing the SwingBlast Application 32
Designing the SwingBlast Java Application 35
Java Event Model 36
Adding Events to Applications 37
Designing the SwingBlast GUI 39
Coding the SwingBlast GUI 45
Coding the SwingBlast Business Logic 48
Determining Sequence Type: Nucleotide or Protein? 53
Displaying Valid BLAST Options 63
Summary 80
Questions and Exercises 81
Additional Resources 81
Selected Reading 81

Chapter III 83

Running BLAST using SwingBlast 83
Introduction 83
The NCBI QBLAST Package 83
Strategy for Creating a QBlast Based System 84
Designing the BLAST API 86
Description of Blast Classes 88
Implementing JQBlast 92
Enhancing the SwingBlast Application 103
Retrieving Sequences From GenBank Using BioJava 124
Retrieving GenBank Without BioJava 129
Input Validation 132
Controlling Program Events and Responses 137
Reporting BLAST Status 139
Displaying BLAST Results Interactively 143
Summary 151
Questions and Exercises 152
Additional Resources 152
Selected Reading 153

Chapter IV 155

Facilitating PubMed Searches: JavaServer Pages and Java Servletsl55
Introduction 155

VII

HTTP and CGI 155
HTTP Protocol 156
GET and POST Methods 157
CGI For Generating Dynamic Content 157
Servlets and JavaServer Pages Technologies 158
Java API for Servlets and JSPs 159
JavaServer Pages Standard Tag Library (JSTL) 160
Apache Tomcat Server 160
The NCBI Pub Med Literature Search and Retrieval Service 161
Accessing Biomedical Literature Through Entrez 161
Create Web Application With Servlets and JSPs 165

Web Application Structure 167
Creating a Servlet to Access Biomedical Literature 169
Displaying PubMed Abstracts 178
Highlighting Search Terms in Retrieved Abstracts 193

Summary 204
Questions and Exercises 205
Additional Resources 206
Selected Reading 206

Chapter V 209

Creating a Gene Prediction and BLAST Analysis Pipeline 209
Introduction 209
Gene Prediction Programs 209
DNA Transcription and Translation 210
Gene Prediction with Genscan 212
Running Genscan Analyses 213
Analyzing GenScan Output 215
Creating SwingGenscan 221
Writing the Code for SwingGenScan 222
The SwingGenScan User Interface 235
Running SwingGenScan 243
Summary 246
Questions and Exercises 247
Additional Resources 247
Selected Reading 247

Chapter VI 249

cancer Biomedical Informatics Grid (caBIG ™) 249
cancer Biomedical Informatics Grid 249

VIII

Structure and Organization of caBIG™ 250
Data Integration and ETL 253
cancer Common Ontologic Representation Environment (caCORE) .255
Cancer Bioinformatics Infrastructure Objects (caBIO) 257
Downloading and Configuring caBIO 259
Creating the JcaBIO Application 260
JcaBIO Classes and Application Structure 261
Coding the SwingCaBIO Application 263
Coding JcaBIO: The CaBIOReportEngine Class 275
Coding JcaBIO: The CaBIOSearchEngine Class 282
Running the JcaBIO Application 286
Summary 289
Questions and Exercises 290
Additional Resources 291
Selected Reading 292

Appendix 295
Apache Ant and Tomcat 295
Downloading the Apache Tomcat server 295

Managing the Apache Tomcat Server 302
Installing and Configuring the Apache Ant Build Tool 306

Configuring environmental variables for Ant 309
Building and Deploying The Web Application 310

Building the WAR file 310
Deploying the application on Tomcat using Ant 312

Version Control Systems 314

Additional Resources 315

Foreword

April 2006

Introduction

Bioinformatics is at a crossroads. We work in a field that is changing
every day, increasingly moving from specific solutions created by single
researchers working alone or in small groups to larger, often
geographically dispersed programs enabled by collaborative computing
and open software. This book represents an important development, giving
the reader an opportunity to discover how the use of open and reusable
Java code can solve large bioinformatics problems in a software
engineered and robust way. I work with one of the authors of this book
every day, on the National Cancer Institute's cancer Biomedical
Informatics Grid (caBIG™) project, and I can attest that they are well
suited to share with their readers both their experience in the development
and use of bioinformatics software, as well as their interest in solid
software engineering and interoperability.

Background and history

In its short history, bioinformatics has become an increasingly important
part of how scientists involved in biological research go about their work.
This has lead to an explosion of interest in the subject, and a similar
explosion in tools and data resources for researchers to learn and use in
their work. Historically, tools for bioinformatics have been idiosyncratic
and are custom-developed by the end-users (or those close to them) in an
iterative fashion until the specific immediate problem is solved. This has
led to a balkanization of informatics systems, sometimes yielding multiple,
incompatible systems at a single institution for a single application. This
trend is beginning to change, with groups throughout the research
community developing standards and shared data models, in areas ranging

X

from gene expression arrays to pathways and proteomics. With a range of
emerging software capabilities and a growing interest in interoperable
tools and standards, bioinformatics practitioners have an ever-expanding
toolbox from which to draw on to develop the basic software infrastructure
behind their work. Similarly, with the increasing interest within the
biomedical informatics community in the use of well-defined software
engineering methodologies, and disciplines like design patterns and model-
driven architecture, the software developed there will increasingly last
longer, be easier to maintain, foster interoperability and reuse, and
ultimately be more robust and cost effective.

Interfaces and standards

Interfaces and standards, as well as the use of well established
development platforms, especially object-oriented programming, allow the
bioinformatics practitioner to solve problems faster, with fewer lines of
reusable, well-documented code than before. Through access to and study
of well-established principles of software engineering and computer
science, the solutions to problems in biomedical informatics will also be
solid and optimally designed. With the increasing size of the datasets used
in biomolecular informatics, derived from all manner of new high-
throughput technologies and online databases, it is increasingly important
to use thoughtful, efficient and well-established algorithms in the analysis
of that data. Informatics students who can decompose complex,
biologically significant informatics problems into simpler models, for
which there are corresponding, validated and pre-existing software objects,
will be amply rewarded for their efforts. It is by building on well-
supported software platforms, using established and tested methodologies,
that the most favorable balance can be achieved between effort and
benefit.

Java as a platform

This book will teach you ways to make use of the Java programming
language as a platform for your work in biomedical informatics, and in
doing so, will open you up to the possibility of using a wide range of
software objects in use throughout the large software engineering and
computer science communities. Java is, of course, not the only object-
oriented platform that is appropriate for bioinformatics. Perl is very well

XI

established, and are python, C++ and many others. The lessons that you
can learn in Java are transferable to any object-oriented system, and Java is
proving to be a solid platform for work throughout the informatics
community. In the caBIG™ project that both Harshawardhan and I are a
part of, Java is one of the main (but far from the only) programming
languages used in that project. As a result, there is a lot of infrastructure
available in the form of open-source code and open-content resources that
are available for the busy researcher, serious student, or interested
hobbyist. The latter chapters in this book detail how to connect with and
make use of those resources to solve your own informatics programs.

The future

Through the efforts of a global community of biomedical informatics
researchers, and through the prevalence of the Internet, it has become
possible for any interested person to learn enough about biology, software
engineering, and computer science, to contribute meaningfully to the
emerging science of informatics. With the amount of openly available raw
biological data growing by leaps and bounds every day, there is every
reason to believe that you can contribute too, and the book that you hold in
your hand is a great way to join in. Bon voyage!

Mark Adams
Program Manager
NCI Cancer Biomedical Informatics Grid (caBIG™)
Booz Allen Hamilton
Rockville, MD

Preface

On April 15, 2003, the International Human Genome Sequencing
Consortium (IHGSC) - an association of laboratories from around the
world which had jointly undertaken the Human Genome Project formally
announced the completion of the colossal task they had set out to
accomplish: the sequencing and assembly of the 3 billion bases that
comprise the human genome. This was a truly landmark achievement for
science and medicine. Today, the word "genome" has become a household
term and together with bioinformatics has revolutionized how we approach
biomedical research. The human genome project has led to identification
of thousands of disease genes and paved the way for the development of
newer drugs and treatments. Undoubtedly, the sequencing of the human
and other genomes is just the beginning of the revolution that is unfolding
right in front of our eyes. We are moving towards a paradigm shift in
medicine, from just-in-time treatment that is given after the onset of
symptoms to predictive and personalized treatment where the
determination of the genetic factors predisposing an individual to disease
is made right at birth and treatment started much before the onset of
disease.

There is also a fundamental shift in how biomedical research is
going to be conducted and funded in the years to come, especially, in areas
such as cancer research and heart disease where there is a critical need to
bring newer and better treatments for patients. Cancer has passed heart
disease as the number one killer in UK and US and has been recognized by
the World Health Organization as a major health problem across the globe.
To meet this challenge, the US National Cancer Institute (NCI) has
launched the biggest collaborative research program in 2003 called the
cancer Biomedical Informatics Grid (caBIG™). In the words of NCI
Director, Dr. Andrew von Eschenbach, "...caBIG will become the 'World
Wide Web' of cancer research informatics and will accelerate the
development of exciting discoveries in all areas of cancer research". Thus
started the journey towards the NCI Challenge Goal, "To eliminate the
suffering and death due to cancer by 2015" and together with it the efforts

XIV

of more than 50 NCI-designated cancer centers, scores of research
laboratories, Universities and public and private institutions across the
country.

Where does J2EE come in the picture? The healthcare and medical
research enterprise that we see today with its complex distributed Internet-
enabled architecture is dependent on technologies that provide the critical
infrastructure components necessary to fulfill its patient data safety,
security and regulatory compliance requirements. Java has emerged as a
powerful programming language for developing secure, scalable and
robust web-enabled applications and is particularly well suited for building
the many interrelated components of the geographically dispersed
biomedical research and business engine. Together with support from a
number of open source standards, J2EE offers a number of advantages for
such applications and is the major platform for development efforts under
caBIG™.

Why now?

We were confronted with this question early on in the writing of
the book. The answer lies in the way the biomedical research enterprise
has been transforming itself over the past decade or so and in doing so,
promising to revolutionize the way we provide patient care. caBIG™ is
based on the principles of open source, open access, open development and
federation and uses J2EE and open source technologies for all software
development efforts under the program. CaBIG™ is perhaps the next
major landmark in the making in the history of biomedical research.
Consequently, the time for a closer look at J2EE and open source
technologies in a way that combines industry standard software
engineering and design principles, genomics, bioinformatics and cancer
research, is ripe.

This book is an attempt to fill that critical need. The main
differentiating feature of the book is its focus on creating and integrating
practical, useful tools for the scientific community in the context of real-
life, real-value biomedical problems that researchers encounter on a
routine basis. The book leverages technologies for molecular biology,
genomics, bioinformatics, clinical research and cancer research developed
by the National Cancer Institute Center for Bioinformatics (NCICB), the
National Center for Biotechnology Information (NCBI, a division of the

XV

National Library of Medicine (NLM) at the NIH), and scores of research
organizations across the nation.

The book begins with an overview of the state of biomedical
research today and the challenges it faces due to the silo model that has
perpetuated over decades across universities and research centers across
the world. It establishes a case for and the rationale behind the current
move towards integrative, collaborative and standards based research
platform through an introduction to the NCI caBIG™ program. It next
provides an overview of emerging architectural trends such as Web
Services and Service-Oriented Architecture. The book is not as much
about the J2EE platform as it is about its application to building useful
software and does not dwell on the theoretical aspects of the language or
the platform; the authors (as well as the readers) recognize that several
excellent works on that topic already exist. Instead the uniqueness of this
book is that after just a short introduction, it takes a deep dive into
demonstrating how to build highly functional graphical user interfaces for
common and widely used bioinformatics tools that most researchers are
familiar with and find indispensable for any kind of research activity. The
reader is led through a step-wise and incremental software development
approach with two goals in mind - to demonstrate a systematic standard
software engineering approach to application development and, to activate
a thoughtful design process in the mind of the developer that is aimed at
exploring ways to enhance the functionality and usefulness for end-users.
The applications that are considered the backbone of modern genomic and
bioinformatics-driven research - Basic Local Alignment Search Tool
(BLAST), Genscan gene prediction tool and others are used to illustrate
this process. The reader will notice a significant amount of code in this
book and realize that this is so by design. Although there are many ways of
architecting a solution for a particular problem, we have illustrated one
such approach while encouraging users to build their own. In doing so, we
have also attempted to promote the reuse of tried and tested code from
existing software libraries based on open source projects such as Apache,
BioJava, caBIG™, and others.

Another differentiating feature of the book, best described by a
reviewer, is we "...take a gradual and applied approach to combining Java
and Bioinformatics". This statement, in fact, represents the very fabric of
our strategy. By the same design, we have devoted little time on describing
features and individual programming elements for which excellent and
easily accessible documentation already exists. Our approach has also been

XVI

to create pipelines where two applications are combined together along
logical workflows that researchers normally use in their research
environments to produce an enhanced application that has more utility than
the individual applications.

The book does not profess to be the comprehensive tome on J2EE;
instead, it is designed to cover a few of the important topics that lend
themselves to use in the situations that are commonly encountered in this
domain. It is hoped that a more focused approach would lead to a better
and clearer understanding of the core capabilities of the platform than
would be achieved by a lengthier treatment of the subject that cover all its
different aspects. Indeed, the vastness and the complexity of the
biomedical space and the pace and profundity with which science,
technology, policy and legislation affect it is at times daunting. The
authors acknowledge the challenge of writing on a topic this difficult and
hope to address the concerns of the readers of this volume to identify gaps
and produce a more inclusive title while providing time for the emerging
technologies described in this book and others beyond the scope of this
book to mature and gain wider acceptance by the user community.

With this background in mind, the book is especially tailored
towards graduate students majoring in computer science, or information
technology and who intend to take up careers in architecting software
solutions for biomedicine and healthcare. It is also meant for practicing
professionals who are actively involved in developing, maintaining or
enhancing biomedical software and need to remain on the cutting edge of
trends and standards in medicine and information. Finally, it will also be
useful to molecular biologists, life scientists and clinicians who have a
strong commitment towards understanding how software technologies can
be put to use in solving the unique demands presented by the modern post-
genomic translational research landscape.

This work would not be possible but for the many people who
helped us get our thoughts together and organized to this point. We thank
the many initial reviewers of this book who represent both private as well
as public companies and research organizations including thought leaders
in the field, many of whom are closely associated with the latest
movements in information and biomedical technologies, and in their
application to initiatives such as caBIG™. We thank Dr. Mark Adams, the
caBIG™ Program Manager, for his wholehearted support for the book
from concept to conclusion and for lending his expert insight into the

XVII

future of biomedicine as captured in the Foreword for this book. We thank
the good people at Springer - especially, Joseph Burns and Marcia Kidston
and their team - for sticking with us throughout the process and coming to
our assistance whenever we had the slightest of troubles. We also thank
our individual families - the grown-ups (our wives) Nathalie Hujol and
Snehal Bal, and not so grown-up (Arnav Bal, just 3 at the time of this
writing), who knowingly or unknowingly - but by no means reluctantly -
allowed us both to pursue this adventure and leave the life outside our
small world for the better part of the 2005-2006 to flourish without our
intercession for the most part.

To all our readers - whether you are an end-user or a developer, a
biologist, a clinician or a bioinformatician or, indeed, one of the many
documented cross-disciplinary "hybrid professionals" - we hope this book
serves the small but meaningful purpose we began with in our minds and
that it provides a vignette into the fast and exciting world of biomedical
research. We value your feedback and will continue to incorporate your
suggestions and work hard to meet your expectations in partnership with
you throughout the lifetime of this book. We hope to hear from you!

Bon chance and bonne journee.

Harshawardhan Bal
Johnny Hujol

April 2006

Chapter I

Introduction to Bioinformatics and Java

The Origins of Bioinformatics

On April 15, 2003, the International Human Genome Sequencing
Consortium (IHGSC) - the association of laboratories from around the
world which had jointly undertaken the Human Genome Project (HOP)
formally announced the completion of the project and the colossal task that
lay at its core: the sequencing and assembly of the more than 3 billion
bases that comprise the Homo sapiens (human) genome. This is a truly
landmark achievement for science and medicine. According to Nobel
Laureate James D. Watson, President of the Cold Spring Harbor
Laboratory, "The completion of the Human Genome Project is a truly
momentous occasion for every human being around the globe." In the
words of Elbert Branscom, Founding Director of the Joint Genome
Institute (JGI), "We will see everything before this like the dark ages of
biology".

The HGP has had wide ranging implications on every aspect of science
and medicine. As a result of the HGP, scientists have mapped the DNA
hieroglyphic of the human genome to an accuracy of 99.99 percent and
have estimated that human life and all its molecular, cellular and
organismal machinery is programmed by 30,000 odd individual genes. It
has given birth to Bioinformatics - a new scientific discipline at the
crossroads of biology, medicine and information technology and provided
an impetus for the rapid development of the fields of Genomics (the study
of the genome) and Proteomics (the study of the entire complement of

proteins expressed by the genome). Along with the sequencing of the
human genome, the sequencing of model plant and animal genomes such
as Arabidopsis thaliana (thale cress), Caenorhabditis elegans (worm),
Danio rerio (zebrafish) and Drosophila melanogaster (fruit fly) has led to
the development of fundamentally new discovery approaches and
technologies that promise to revolutionize medicine.

In the space of just a few years, we have taken a giant step closer to a
paradigm shift from "just-in-time" medicine (where treatment is provided
after the appearance of symptoms) to "predictive medicine" (where the
entire spectrum of disease susceptibility of an individual can be mapped at
birth and treated in advance of the appearance of disease). We are also
moving closer to an entirely new concept in therapy - "personalized
medicine" (as opposed to "generalized medicine"), where individuals
receive treatment with "designer" drugs that are tailored to suit their
specific genetic backgrounds, thereby maximizing therapeutic potential
and minimizing the occurrence of adverse events.

Why does one person respond to a certain medication while another
does not? Why do some women get breast cancer while others do not?
Why are some individuals more susceptible to an infectious disease than
others? These are the kind of questions that biologists are trying to address.
The next few decades will be completely consumed in research that leads
to answers to these issues. The need to analyze vast amounts of genetic
data has lead to the growth of powerful technologies that enable
researchers to study the regulation of tens of thousands of genes at the
same time. To be able to perform these information intensive tasks,
scientists and clinicians must be comfortable with both the biological and
the computational aspects of Bioinformatics as well as with the basic tasks
of retrieving, extracting, organizing, analyzing and representing the data.
While Perl and other scripting languages are preferred for day-to-day
analysis of biological data, they are not suited for creating enterprise-level
software. A robust Object-Oriented Analysis, Design and Programming
language such as Java is better suited for this purpose. The Java 2
Enterprise Edition (J2EE) framework provides the ability to develop
distributed, multi-tier applications that can be deployed and connected
over the web. J2EE is platform-agnostic, meaning that it can run on
virtually any platform. This is because the Java code is compiled into an
intermediate code called byte code, which is interpreted and executed by
the Java Runtime Environment (JRE) at run-time. Since JRE is available

Introduction to Bioinformatics and Java

on any platform, code once created in Java can be run on any operating
system.

In this Chapter, we will explore some bioinformatics applications that
have been written in Java in order to demonstrate the power of J2EE
technologies for creating biomedical software. In particular, we will focus
on applications that have been developed for cancer research that have
achieved the "industry standard" reputation in modern research and are
actively being integrated for use in such cutting-edge research initiatives as
the National Cancer Institute's cancer Biomedical Informatics Grid
program (caBIG™, http://cabig.nci.nih.gov/). In doing so, we will provide
an introduction to caBIG™ in this chapter and discuss how the different
tools and applications that are being built or are being brought under the
caBIG™ umbrella are helping solve the many bottlenecks in biomedical
research.

Current State of Biomedical Research

Traditionally, biomedical research has been (and is still being)
conducted in laboratories around the world in relative isolation from other
laboratories, even if the subject of research may have been (or is) the same.
While this method of operation has over the decades led to a rich
collection of research data and many significant biomedical discoveries, it
has also led to the isolation of data and capabilities into independent silos
of information and expertise that lie locked in databases or within people
and inaccessible to the larger research community. In addition, since the
majority of individual laboratories have evolved their own operating
procedures, methodologies and vocabularies to suit their own specific
research problems, there has been a relative dearth of standardized ways of
conducting and reporting experimental data. The lack of standardization
and data sharing has proven to be a significant impediment to biomedical
research and directly affects our ability to design better and more effective
treatments.

Experts all over the world now generally agree that a better use of
research data, especially with the aim of enhancing the pace of biomedical
research for the benefit of the patient, is through open collaboration and
sharing. This approach eliminates duplication of effort and result in a more
efficient use of limited resources. This realization is especially significant
in the post-genomic era. Modern day high-throughput assay technologies

have given researchers the power to probe living systems with
unprecedented precision and depth. This has in turn led to the adoption of
a "systems" approach to research with an increasing trend towards
studying entire pathways, hundreds and thousands of genes and whole
organisms in one single experiment. However, this approach has also led
to an explosion of raw data. There is today an ever-increasing need to
connect this raw data into meaningful actionable knowledge that can yield
real insights into disease processes.

Another significant change is the realization that a more powerful way
of conducting research is to integrate data from multiple different fields of
study spanning basic (laboratory-based) and clinical (patient-focused)
research. This new approach called "Translational research" requires a
team approach between physicians, scientists, bioinformaticians,
statisticians and a host of other professionals working closely together
towards specific outcomes. This method of operation brings together the
cellular, molecular, biochemical, genetic and other biological aspects of
research together with a clinical understanding of disease that results in
practical outcomes of valuable clinical relevance. For example,
translational research on lung cancer may involve a team consisting of
molecular biologists, computational biologists and biochemists on one
hand and, thoracic surgeons, medical oncologists, radiation oncologists
and nurse practitioners on the other to understand basic disease
mechanisms and to improve patient outcomes.

The basic idea behind this approach is to assimilate as much
corroborating evidence as possible to test and validate a hypothesis rather
than dealing with separate isolated bits and pieces of raw data, which do
not point to a robust testable hypothesis. With the appropriate standards,
processes, policies and technologies in place, a researcher following a
promising lead, for example, a gene or a protein that is significantly
overexpressed in a specific cell population or in a laboratory model and is
suspected to play an important role in disease causation, can extend the
research in meaningful ways by:

1. performing experiments that prove that inhibiting protein
overexpression or inhibiting a specific step in a biochemical pathway
reverses the ill-effects of the abnormal protein expression or the
aberrant pathway

Introduction to Bioinformatics and Java

2. confirming that the results can be duplicated in biospecimens - that is,
samples derived from tissues obtained from specific human organs
(for example, lungs) possessing the same disease pathology and
characteristics, thereby extending the evidence in actual patient
samples

3. confirming that the protein is not present in normal non-target tissues
(for example, liver, kidney, etc.) to avoid occurrence of toxicity due
to a chemical agent being tested for interventional therapy

4. identifying patient cohorts who fit the study criteria and conducting
therapeutic clinical trials to test efficacy of known or experimental
agents for interventional therapy

The over or under expression of a biomolecule (typically a gene or a
protein) - that is, its presence in higher or lower amounts, respectively,
under a diseased condition (as compared to the levels that are observed
under normal conditions) is generally referred to as differential expression.
The differentially expressed protein in question can serve as a signature or
a fingerprint of the underlying disease mechanism and is the living
system's response to an alteration in normal physiology caused by disease
or other external stimuli. Since it is a signal or a "marker" with significant
biological implications, it is called a biomarker. Biomarkers can be any
biomolecule - proteins, peptides, nucleic acids, carbohydrates, lipids,
metabolites, etc. - the concentrations of which may increase or decrease,
under specific abnormal conditions. An example of a biomarker is
cholesterol, which is commonly used to identify risk of heart disease.
Biomarkers can be assayed by standard biochemical methods and can be
used as indicators of disease states in diagnostics as well as provide targets
for therapeutic intervention. The application of biomarkers to diagnostics
includes the ability to diagnose and monitor disease, risk stratification,
disease prognosis, drug eligibility, prediction of safety and efficacy, and
therapeutic monitoring. The therapeutic aspect is equally important
because they provide a reliable readout of drug function and treatment
efficacy and therefore guide decisions on the clinical development of
promising drug candidates.

The research can be further extended by identifying patient cohorts who
fit the study criteria in clinical trials to test efficacy of known or
experimental agents that inhibit overexpression or otherwise reverses the
ill-effects of the causative protein. Of course, this is a rather simplistic

representation of an actual research scenario. The researcher may spend
months or even years studying disease causation in the laboratory
eliminating other suspected causative agents, sifting through literature and
accumulating data from studies performed by other scientists, mining the
available data using statistical and analytic algorithms, and iterating
through each of these steps till a model that fits the observed data can be
created with a high-level of confidence. In reaching this goal, the
researcher has to have access to the appropriate tools to identify relevant
research, assure that the data can be compared across experiments done
under different conditions or if not, apply the necessary manipulations
using appropriate tools, have access to those tools, and have the necessary
resources to identify tissues, experimental models or human subjects
locally or at other institutions. Such "bench to bedside" research can be
conducted only in a situation where data, resources, applications and
people are connected with one another and accessible via standardized
ways on a network or grid infrastructure. This is the rational and promise
of NCI's caBIG™ program.

The cancer Biomedical Informatics Grid program

caBIG™ was started by the NCI in July 2003 as a pilot project to create
a standards-based interoperable network of cancer centers across the nation
to increase data sharing and cooperation between biomedical scientists and
to enhance the pace of cancer research. The aim of caBIG ™ is to integrate
bioinformatics, cancer informatics, tissue informatics, and pathology
informatics to create a network of data, applications and individuals who
can share data and tools seamlessly across geographical boundaries. To
cover the various aspects of the complex cancer research domain, caBIG™
is divided into four Workspaces - Clinical Trial Management Systems
(CTMS), Integrative Cancer Research (ICR), In Vivo Imaging and the
Tissue Banks and Pathology Tools (TBPT) Workspace. Simply stated,
caBIG™ is putting the "e" in cancer research, leading to an "e-research"
platform that integrates data and knowledge from basic (laboratory-based)
research to clinical (patient-based) research. To draw an analogy with the
term e-business that refers to the application of Internet technologies to
streamline enterprise business processes, caBIG™ is aimed at building the
infrastructure, processes and policies to make research data from multiple
research centers available via the web, handle secure transactions across
networks, support queries and secure information interchange between
distributed institutions, and enhance the efficiency of the cancer research

Introduction to Bioinformatics and Java

engine as a whole. Making cancer data available electronically over the
Internet enhances the speed of access to information, offers the opportunity
to globalize data access and interchange, enables access to the most up-to-
date data, enables researchers to adapt and quickly incorporate the latest
understanding of disease biology into their experimental designs, and
ultimately, to respond faster to critical patient needs and provide high
quality service.

While there are some parallels between biomedical research data and
business data, the two differ fundamentally in many respects, especially
with respect to data on patient related medical information. caBIG™
therefore has to create this e-research infrastructure in strict compliance
with applicable federal regulations for the protection of what is known as
individually identifiable health information that can be linked to personal
medical data and, if exposed, provoke the risk of misuse. In particular, the
privacy provisions of the Health Insurance Portability and Accountability
Act of 1996 (HIPAA), apply to and seek to protect patient health
information that is created or maintained by health care providers who
engage in certain electronic transactions, health plans, and health care
clearinghouses. A detailed treatment of the HIPAA rule is beyond the
scope of this book. Suffice to say that this federal law gives patients rights
over any personal medical data that health professionals and care providers
collect in medical records and sets rules and limitations around who can
receive and view their personal health information.

caBIG™ Organization and Architecture

As of this writing, caBIG™ had grown to a large enterprise consisting of
more than 70 individual projects, more than 800 individual participants
spanning greater than 70 public and private organizations. The caBIG™
enterprise has to support a complex interplay of customers (patients,
research investigators, clinicians, bioinformaticians, etc.), and federated
data (both text and image), services and analytic tools (data extraction,
organization, querying, mining, clustering and visualization tools) over the
web, while ensuring that it meets the necessary performance and capacity
requirements for such operations. By its very design, caBIG™ systems
need to be compatible with other systems on the network and make data
and services available irrespective of the type of web-based system or
device accessing caBIG™ resources. The caBIG™ infrastructure has to
provide fail-safe mechanisms to serve its resources in a continuous manner

without downtime for optimal benefit for the research community. The
need to access and distribute sensitive clinical, pharmacogenetic and
financial billing data under caBIG™ means that appropriate technologies
and policies must be implemented to assure privacy, confidentiality and
integrity of data, while blocking unauthorized access. These are just a few
issues that make the caBIG™ initiative such a complex undertaking. The
NCI Center for Bioinformatics (NCICB) has a key role in the making of
caBIG™ and is actively developing the critical infrastructure components
needed to address these requirements. Information on a sampling of such
tools, for example, the Common Ontologic Representation Environment
(caCORE) Software Development Kit (caCORE SDK), the Common
Security Module (CSM), caAdapter and others, can viewed at the NCICB
website at the following URL
(http://ncicb.nci.nih.gov/NCICB/infrastructure).

How does one design a secure and scalable solution for an enterprise
this large that covers all the pieces - the biomedical and clinical
organization, the computing infrastructure, including applications,
systems, servers, storage and the network - of a complex and distributed
modern research and healthcare environment? How can the various
building blocks or business components be assembled to deliver the
services and capabilities required to address the lifecycle needs of the
federated biomedical enterprise? The presence of data, services and tools
in a distributed manner and the requirement of data sharing between
organizations via the web means that we can no longer develop monolithic
applications with user interfaces that simply talk to a backend database.
Instead, the architecture has to accommodate a new design consisting of
several "layers" or "tiers" that may be present on separate physical
machines, operate independently of one another and subserve specific
functions. In effect, any number of such layers may be present and because
of the functional separation that the layer architecture provides, each layer
preserves its distinct identity and can be maintained without regard for the
implementation details of other layers. In effect, this design affords the
developer with immense convenience for use and maintainability because
entire tier implementations can be modified without affecting the rest of
the application. The users can in turn access the required resources in a
seamless and transparent manner. Such an architecture is called an n-tier
architecture. The n-tier architecture consists of several tiers that perform
the following functions - the display or presentation of data, the conduct of
business logic and the storage of data. These are commonly referred to as
the Presentation tier, the Business tier, and the Data or Persistence tier.

Introduction to Bioinformatics and Java 9

respectively. Fig. 1.1 below provides a graphical representation of this
model.

Presertation Lay

iS

Web EfO'.vsei

j a -

stints

er j Business Layer

j Busiiwss logic

HTTt'

KB

4

External (caBIG) Data Stores

id/«RAr

f.TBIO
M B I O Lttia

S-itm^s

r
JDBi:

Perslstaice Layer

SQL %i*^ ieb :

^toied l-'riKf^tkre'i :

[X f̂rabt̂ sf Access Lcigic :

CM-acte MySQL ' * ^ ' *

Fig. 1.1. Components of an n-tier architecture

The Model-View-Controller Framework

A concept that is closely associated with the n-tier architecture is a
design principle called the Model-View-Controller (MVC) framework.
The MVC framework defines separation between the data (Model), the
visual component (View) and the communication that occurs between
them (Controller). There are a number of advantages of using such a
design.

The separation of components allows developers to prototype an
application and validate its requirements quickly. The view, for example,
can be designed and developed independently without affecting the design
of the rest of the application. It's likely that the View will be modified
more often than the Model (the data) to adapt to the requirements of users
navigating through the user interface (UI). In addition, the way the Model
is implemented is fully encapsulated and transparent to the other parts of
the application.

10

The Controller handles the input that the View receives; it can then take
action to update the Model. The Controller can also inform the View to
update itself or the View can register itself as a listener of a Model, in
which case the View will update anytime the Model notifies its listeners.
This is the definition of the observer pattern where a View is the Observer
and the Model is the observable. The most important thing in MVC is to
keep the separation between the Model and the View. We will use this as a
guiding principle as we build our applications in subsequent chapters.

Web Services and Service-Oriented Architecture

The biomedical enterprise needs to transform itself from an unorganized
collection of data, tools and services into an interoperable, integrated and
standards-based model that allows the system and its users to interact with
a variety of business elements and invoke a variety of services along
logical workflows. Under this scheme, any machine located on the web
can be thought of as a provider of a consistent, reliable and defined
"service" that can be invoked in a repeatable and standard manner. The
Basic Local Alignment Search Tool (BLAST) server provided by the
National Center for Biotechnology Information (NCBI), for example,
provides a distinct service to a user - the ability to perform homology
searches with a given nucleotide of amino acid sequence. The Genscan
web server at MIT provides a different kind of service called "gene
prediction" or the identification of complete gene structures in genomic
DNA sequences. One can imagine the World Wide Web as made up of a
large number of such services that can be accessed via standard Internet
protocols such as HTTP, FTP etc. Each of these separate bits of
functionality is a service and in each case, a service consumer (user or
client) communicates and requests services from a service provider; the
service provider in return communicates back the service requested. Both
transactions (request and response) are carried out using messages that
both parties can understand. Messaging between the services can be
performed using the extensible Markup Language {XML). This is the
concept behind the emerging web architecture called service-oriented
architecture (SOA). The individuals services are connected together using
Web Services, which define a set of technologies that enable connections
between services.

The individual (web) services are self-contained, self-describing,
modular applications that can be published, located and invoked across the

Introduction to Bioinformatics and Java 11

Web as well as discovered by other applications on the web. Each of these
characteristics of a web service defines an essential component of the web
services platform:

1. The means to communicate (pass messages and data) between
services. This is usually achieved using Simple Object Access
Protocol {SOAP), which defines a uniform way of passing XML-
encoded data and a way to perform remote procedure calls (RPCs)
using the Hypertext Transfer Protocol (HTTP).

2. The ability to dynamically locate other services present on the web
using a directory service. This is called Universal Description,
Discovery and Integration Service (UDDl).

3. The ability to describe what a web service can do, where it resides,
and how to invoke it. This is achieved through the Web Services
Definition Language (WSDL).

As is apparent from the above, web services must use interfaces based
on common Internet protocols such as HTTP and must use the XML
standard for messaging. Although a detailed description of the web
services platform and SOA is beyond the scope of this text, we will
illustrate how the caBIG™ grid architecture called caGrid addresses the
complex interoperability and integration issue we described earlier. We
will delve into caBIG™ and the technologies being developed under the
project in more detail in Chapter 6.

CaGrid

As mentioned briefly before, to make data interchange and collaboration
possible, NCI and the caBIG™ participating institutions are using a
number of technologies that the NCICB has been developing for the last
several years. These include, for example, caCORE, Cancer
Bioinformatics Infrastructure Objects (caBIO) and the Cancer Data
Standards Repository (caDSR). These technologies allow integration of
biomedical applications with a vast array of NCI data sources including
genomic, animal model and clinical data. The NCI has also formulated
compatibility guidelines to ensure that applications developed under the
caBIG™ umbrella can interoperate with one another. The caBIG
compatibility guidelines necessitate the use of controlled vocabularies and

12

terminologies, Common Data Elements (CDEs), well documented API and
Unified Modeling Language (UML) based object models to ensure
interoperability with other caBIG applications. caCORE, which is caBIG's
principle software development platform allows users to create caBIG ™ -
compatible systems using an in-built modeling tool and a code generator.

The caBIG™ grid framework or caGrid is based on the service-oriented
architecture model and open standards such as Open Grid Services
Architecture (OGSA) created by the Global GridForum (GGF) for grid
computing. The current version of caGrid as of this writing (caGrid 0.5) is
built using the Globus Toolkit 3.2 and the OGSA Data Access Integration
(OGSA-DAI) framework version 5.0. The Globus Toolkit provides
services and applications for the secure sharing and management of
computing power, databases, and analytic tools over the web across
organizational and geographic boundaries. OGSA-DAI component
provides the middleware needed for accessing and integrating data via web
services from the multitude of geographically distributed biomedical data
sources on the grid including relational databases and XML based
databases. Through the combination of these various components, caGrid
empowers the caBIG™ engine and its users to develop and deploy of
community provided services and API for building client applications.

Now that we have the basic background on caBIG™ and bioinformatics,
lets examine a few software applications that are currently being used or
are being developed under the caBIG'^" program for oncology research to
illustrate what scientists, clinicians, bioinformaticians and software
engineers have together accomplished to address the needs in this area. We
will use the research scenario we had discussed earlier - the differential
expression of a gene and its product in a specific cell population or, in a
disease model that leads to the plausible hypothesis that it has a role in
disease causation - to provide examples of biomedical software
applications. Table 1.1 provides a breakdown of the translational research
scenario into discrete sub-components and lists out the corresponding
categories that apply to the scenario.

Table 1.1. Research use cases and corresponding categories

Research scenario Category

Introduction to Bioinformatics and Java 13

Analyze genes that are differentially expressed inGene expression analysis
a specific cell population or a disease model

Analyze proteins that are differentially expressed Proteomics
in a specific cell population or in a disease model

Analyze pathways that the differentially Pathway analysis
expressed molecules participate in

Query for and identify tissue samples located in Biospecimen inventory and
distributed biospecimen resources that match the annotation systems
clinical, pathologic, and experimental parameters
of the disease under investigation

Table 1.2 provides brief descriptions of the tools that we will introduce
in this chapter to illustrate a representative set of Java-based
bioinformatics applications. Also listed are the caBIG "' Workspaces under
which each of the tools are being developed.

Table 1.2. Java-based bioinformatics tools

Name of application CaBIG ™ Description
Workspace

CaArray ICR Repository for managing, analyzing and
visualizing of gene expression data from
microarray experiments

CaWorkBench ICR Gene expression, pathway and sequence
analysis, transcription factor binding site
analysis, and pattern discovery

RProteomics ICR Stadstica! analysis, visualization m modeling
of proteomics spectra

cPath ICR Integration and analysis system for integrating
protein-protein interaction and molecular
pathway information from multiple sources

caTissue Core TBPT Core biospecimen management tool for
inventory, tracking and basic annotation of
biospecimens.

CaTissue Clinical TBPT Tool for addition of pathology annotation to

Annotation Engine stored biospecimens using data from Anatomy
(CAE) Pathology systems. Clinical Pathology systems

and tumor registries,
cancer Text TBPT Tool for extraction of pathology data such as
Information tumor histology, staging, molecular markers.
Extraction System etc., from free text surgical pathology reports.
(CaTIES)

Let's look at each of the tools in turn and understand how they sub
serve or address a small component of the bigger research problem.

CaArray

caArray is an open-source standards-based repository for managing,
analyzing and visualizing of gene expression data from microarray
experiments. caArray enables researchers to make their microarray data
publicly available to the larger cancer research community across
geographically separated research centers via a web portal interface as well
as through API. caArray uses a number of NCI technologies such as
caCORE, caBIO and caDSR. In addition, caArray is built upon a number
of caBIG™ compliant standards for data exchange such as Minimum
Information About a Microarray Experiment (MIAME), MicroArray and
Gene Expression Markup Language (MAGE-ML), MicroArray and Gene
Expression Object Model (MAGE-OM) and uses controlled vocabularies
based on the Microarray and Gene Expression Database (MGED)
Ontology. caArray source code and API are available from NCICB for
local installation under an open source license.

MIAME is a set of guidelines that define the minimum set of data
that is needed to enable the unequivocal interpretation of the results
of a microarray experiment and to allow researchers the ability to
reproduce the results of previously reported experiments. The
guidelines include elements of microarray experiments such as aim
and brief description of experiment, conditions under which the
experiment was carried out, experimental design, quality control
procedures used, the experimental protocol used, protocol and
conditions used for hybridization and processing of the array, data
normalization, extraction and processing protocols, etc.

The MicroArray and Gene Expression (MAGE) group aims to provide a
standard for the representation of microarray expression data that would

Introduction to Bioinformatics and Java

facilitate the exciiange of microarray information between different data
systems. This is being done under the aegis of the Object Management
Group"^^ (OMG'^"), an international not-for-profit consortium defining
standards for distributed object computing and interoperable enterprise
applications. This has led to the establishment of a data exchange object
model (MAGE-OM) and data exchange format (MAGE-ML) for
microarray expression experiments. The purpose of the MGED Ontology
is to provide standard terminology for the annotation of microarray
experiments and to enable unambiguous descriptions of how the
experiment was performed.

caArray is available for download at the NCI website at the following
URL: http://caarray.nci.nih.gov/. Fig. 1.2 shows the outcome of a query run
on the caArray web portal for an experiment performed by investigators on
the classification of complex diseases such as Diffuse large B-cell
lymphoma to identify targets for interventional therapy.

lil̂ ^^ î in^f^tii:; i;>irr!.::.̂ l-uiq*^ &-^w!i iyinpiieui:

GENERAL EXPERIMEI^T INFORMATION

K-n;i.'.-;i O.I'

.:'i.<ij:n-',li(i-,t:.ni *!,?•, :i(:.-.'s i -nn. I.-I i l • i:«'(':rii'.'i.vl.;i :•*•(vn-r-.l

v r -v i i v l.'os/, ' h " • i . ' i . - f .-'i-i-. ••••fr'i-M"l> -iH-if-,".-V".' r-.;-i-rt' tvith-i. <-.('r-ifV li<i

• ! ' i i (>((»(•• . • r i ' l u ' i ' iUh . r.Ci' i f . i t ' . •n i - t - , ' f r

ijiiijiiiiiiiiiiiiiiiiiiiiiiiilJIKSiiiEr^^^

Fig. 1.2. Querying the caArray web portal for information on Experiments

16

Fig. 1.3 shows the results of a query to identify frozen samples
(Biosource type) of type "cell" with name "lung" for organism "Homo
sapiens" (that is, human samples) supplied by NCI.

Fig. 1.3. Querying the caArray web portal for information on Biospecimens

CaWorkbench

caWorkbench is a suite of tools for loading, visualizing and analyzing
gene expression data and provides the capability to integrate data of
different types and from across a number of research institutions.
caWorkbench is written with the Java programming language, uses the
Java SWING libraries for creating the user interface. It runs on any
platform that supports Java 1.5 including Windows XP, Solaris, Linux and
OS X 10.5. The software is built on a component based architecture where
each feature within the application such as pathways, annotation,
expression profiles, etc. is available as a separate component that can be
loaded individually when the application is started. caWorkbench is
designed to retrieve data from the caArray database via the MAGE-OM
API, and utilizes NCICB's caBIO API to access genomic, cancer models,
molecular pathway and clinical trials information. caWorkbench is

Introduction to Bio informatics and Java 17

available for download from the NCI website at
http://ncicb.nci.nih.gov/download.

RProteomics

The goal of the RProteomics project is to build open-source tools and
develop standards for proteomics data analysis. As described earlier,
Proteomics is the systematic study of the complete complements of
proteins expressed by the genome. While gene expression is a study of the
process of gene transcription (the synthesis of RNA from DNA),
proteomics is the study of the process of gene translation (the synthesis or
expression of protein from RNA). The protein machinery constitutes the
signal transduction mechanism of a living cell or organism and is
responsible for much of the physiological processes that sustain life.
Proteomics is therefore a powerful tool in the arsenal of the biologist in the
pursuit of molecular mechanisms of disease. Proteomics encompasses the
determination of protein expression levels, protein-protein interactions,
protein localization, and regulation by post-translational modifications,
etc., ultimately to decipher protein function. The basic methodology in
proteomics is the separation of proteins in a sample by gel electrophoresis,
extracting the proteins of interest and followed by mass spectrometry (MS)
to determine their identity and characteristics.

RProteomics derives its name from the open source R software
environment that it uses for statistical analyses and visualization of
proteomics data. In the future it will also provide a proteomics repository
and access to proteomics data via web services. RProteomics includes
statistical routines to analyze spectrometric data including algorithms for
background curve determination, denoising, peak calibration,
normalization of peak intensities, and predictive modeling. RProteomics
supports the mzXML proteomics data standard and the MIAPE {Minimal
Information About a Proteomics Experiment) standard, the latter of which
is being developed by The Human Proteome Organisation Proteomics
Standards Initiative to standardize data representation in proteomics and
facilitate data comparison and exchange.

cPath

The cBio Pathway Information Resource or cPath is an open source
pathway integration and analysis system for integrating protein-protein

interaction and molecular pathway information from multiple sources. It
also provides data visualization and analysis functionality via Cytoscape,
another open source platform for visualizing interaction networks and
integrating them with gene expression profiles. CPath provides access to
data via a standard web service query interface that connects with a
MySQL database backend as well as a HTTP based web service. Java and
is based on a 3-tier architecture using Java servlets and Java Server Pages
(JSP). We will learn more about the Java servlets and JSP technology in
chapter 4. Briefly, servlets and JSP provide a server and platform
independent mechanism to create web-based applications that can serve
dynamic web content.

CaTissue Core, caTissue Clinical Annotation Engine and
caTIES

The simple research scenario we outlined earlier assumes that
researchers can locate the biospecimens or tissues samples with the
matching disease pathology or disease parameters so to perform the
necessary follow-up and validation studies. For example, researchers may
want to query a database for biospecimens that have associated gene
expression data for a gene or set of genes that may be differentially
expressed under a specific disease condition. Under caBIG™, the
functionality to manage, annotate and identify matching biospecimens that
may be present in a federated manner in geographically dispersed research
institutions is being done through the caTissue suite of tools - caTISSUE
Core (not to be confused with caCORE), caTissue Clinical Annotation
Engine and caTIES.

These are some of the most advanced tools that are currently available
in caBIG ™ in terms of the software development effort as well as in terms
of their adoption by a number of cancer centers and research institutions
across the nation. We will illustrate the development efforts behind the
caTissue Core application to demonstrate how the various elements of the
J2EE platform have been applied to create a robust application to facilitate
tissue banking operations.

CaTissue Core

Introduction to Bioinformatics and Java 19

As described earlier, the function of the caTISSUE Core system is to
serve as the base or core solution for biospecimen inventory, tracking and
basic annotation for use across cancer centers and other institutions with
biospecimen resource facilities. In addition, CaTissue Core establishes the
foundation of the TBPT object model that represents the tissue banking
and pathology domain. Together with the other TBPT applications -
caTissue Clinical Annotation Engine and caTIES, caTissue Core
constitutes what is called the caTISSUE system, the comprehensive suite
of tools for managing the life cycle events and operations of the tissue
banking and pathology information domain.

The caTISSUE Core application is comprised of an n-tiered architecture
(Fig. 1.4). The presentation tier consists of a web interface as well as HTTP
based Java API. The web application used Java Server Pages (JSP)
technology to serve dynamic web content. The HTTP API enable users to
access all caTissue Core functionality that is available through the web
based application. The web-based user interface is designed using the
Apache Struts framework following the Model-View-Controller (MVC)
Model 2 design approach. The Model 2 approach is a variation of the
classic Model-View-Controller (MVC) design paradigm we described
earlier. Applied to the Java servlet and JSP technology, under Model 2, the
execution of the business logic is managed by the servlet and the
presentation logic is managed by the JSPs. CaTissue Core also uses the
Tiles framework which specifies the layout of each JSP page using
templates and provides a mechanism to manage and reuse the various
visual components such as the headers, footers and navigational elements
of individual web pages. The caTissue Core business tier contains domain
objects and model classes where the tissue banking related business logic
resides. The Persistence tier is a local database for storage of tissue
banking data, as well as, external data sources such as NCI's Cancer Data
Standards Repository (caDSR) and Enterprise Vocabulary Services (EVS).

CaTissue Core provides two mechanisms for interaction between the
user interface and the backend data stores - through an Object-Relational
Mapping (ORM) tool called Hibernate and through the Java Database
Connectivity (JDBC) API. Hibernate is used to define the mapping
between Java classes to the tables in a relational database in order to
persist the objects in a relational database. JDBC API provide database-
independent connectivity and access to a wide range of SQL databases as
well as other types of data sources, including spreadsheets and flat files.
caTissue Core provides support for Oracle as well as MySQL databases.

20

The caDSR and EVS are a set of resources and tools to describe
biomedical data and concepts in standardized ways using Common Data
Elements (CDE) and controlled vocabulary, respectively. Access to these
services is provided through the caCORE API. We will learn more about
these resources in Chapter 6.

client Layei Presentation Layer Business Layer Persistence Layer

Web Browser

Java Apps ibject i

Web Server

Struts
^Fraiimwurk

Action
Servlel

JSP
iingine

Tiles
Engine

Domain
Ubjccts

Business
Loqic

Data Access
^ Ubiccts

Interface

Hibernate

caCORC
API

Mr i rB
*LaDSR/EVS

Ddtdbdse

Fig. 1.4. caTissue Core n-tier architecture

Summary

This Chapter provides a brief introduction to The Human genome
Project, perhaps the single most important event in the history of medicine
after the elucidation of the double-helix structure of the DNA and to the
fields of Bioinformatics, Genomics and Proteomics. While computing
technology and software have played a fundamental role in the
advancements that medical research has made in the last few decades, they
have also led to problems in data quality. The silo approach that the
biomedical research enterprise has taken has led to isolation of critical
scientific expertise and knowledge, depriving patients of the benefits of
modern science. To correct these issues, and to bring speedier benefits to
individuals with cancer, the NCI in partnership with its Center for
Bioinformatics and a number of Cancer Centers across the country
launched the caBIG™ program with the aim of providing scientists with
the infrastructure and resources to better control, share, assimilate and
integrate data from disparate sources. The chapter also provides an
overview of the role that the J2EE platform has played in biomedical
research especially with the advent of the Internet age and the availability

Introduction to Bioinformatics and Java 21

of the WWW as a catalytic medium for tiie sharing of resources across
space. We also provided examples of a few software applications that
demonstrate the power of the J2EE platform

In the next Chapter, we will build on the understanding we have gained
so far of the state of and the challenges faced by the biomedical enterprise
and begin the exercise of understanding how software is built using the
J2EE platform. We will illustrate this by building an application using the
Java Swing library to run biological sequence searches using the NCBI
BLAST engine.

Questions and Exercises

1. Trace the origins of the Human Genome Project beginning from the
elucidation of the structure of DNA in 1953. What were some of the
landmark events and technologies associated with the successful
sequencing of the human genome?

2. Visit the caBIG™ website to learn more about its organization and
activities. Identify the main reasons behind the launch of the caBIG™
project. What are the technological and social hurdles that caBIG'̂ "
has to overcome in order to be successful? How will caBIG™
transform medicine if it meets its goals?

3. Compare HGP and caBIG™. What are some of the parallels you can
draw between the two projects? Think about how these projects
contribute to understanding of disease, especially cancer, and the
advancement of modern medicine.

4. What tools and technologies are being created by the NCICB and
participating cancer centers to advance the caBIG™ mission? What
role does J2EE play in this effort?

Additional Resources

• Apache Struts - http://struts.apache.org/index.html

22

caBIG™ Compatibility Guidelines -
http://cabig.nci.iiih.gov/guidelines_documentation

caDSR -
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/cadsr

CaWorkBench -
http://wiki.c2b2.columbia.edu/workbench/index.php/Main_Page

EVS-
http://ncicb.nci.nih.gov/NCICB/infrastructure/cacore_overview/vocab
ulary

Genscan - http://genes.mit.edu/GENSCAN.html

Global GridForum - http://www.gridforum.org/

Hibernate - http://www.hibemate.org/

HGP (US Department of Energy site) - http://doegenomes.org/

MAGE-ML - http://www.mged.org/Workgroups/MAGE/mage-
ml.HTML

MGED Ontology -
http://mged.sourceforge.net/ontologies/MGEDontology.php

NCBI BLAST - http://ncbi.nih.gov/BLAST/

OGSA - http://www.globus.org/ogsa/

OMG - http://www.omg.com/

The OGSA-DAI project - http://www.ogsadai.org.uk/

Unified Modeling Language - http://www.uml.org

Introduction to Bio informatics and Java 23

Selected Reading

Initial sequencing and analysis of the human genome. Lander et al. Nature.
2001 Feb 15;409(6822):860-921.

The sequence of the human genome. Venter, JC et al. Science. 2001 Feb
16;291(5507):1304-51.

The caCORE Software Development Kit: streamlining construction of
interoperable biomedical information services. Phillips J, Chilukuri R,
Fragoso G, Warzel D, Covitz PA. BMC Med Inform Decis Mak. 2006 Jan
6;6:2.

Covitz PA, Hartel F, Schaefer C, De Coronado S, Fragoso G, Sahni H,
Gustafson S, Buetow KH. caCORE: a common infrastructure for cancer
informatics. Bioinformatics. 2003;19:2404-2412.

Common data element (CDE) management and deployment in clinical
trials. Warzel DB, Andonaydis C, McCurry B, Chilukuri R,
Ishmukhamedov S, Covitz P. AMIA Annu Symp Proc. 2003; 1048.

Chapter II

Introduction to Basic Local Alignment Search
Tool

The Basic Local Alignment Search Tool or BLAST, as it is commonly
referred to as, is a database search tool, developed and maintained by the
National Center for Biotechnology Information (NCBI). The web-based
tool for BLAST searches is available at:

http://www.ncbi.nlm.nih.gov/BLAST/

The BLAST suite of programs has been designed to find high scoring
local alignments between sequences, without compromising the speed of
such searches. BLAST uses a heuristic algorithm which seeks local as
opposed to global alignments and is therefore able to detect relationships
among sequences which share only isolated regions of similarity (Altschul
et al., 1990). The first version of BLAST was released in 1990 and allowed
users to perform ungapped searches only. The second version of BLAST,
released is 1997, allowed gapped searches (Altschul et al., 1997).

The Purpose of BLAST

Why is BLAST so useful for biologists? It is not uncommon nowadays,
especially with the large number of genomes being sequenced, that a
researcher comes across a novel DNA or protein sequence for which no
functional data is available. Some basic information on the sequence is
necessary before a molecular biologist can take the new sequence into the

26

laboratory and perform meaningful experiments with it. It would, for
example, make the task of deciphering the biological function of a piece of
DNA much easier if it were known that the new sequence encoded a
metabolic enzyme or, indeed, a protein that is a putative member of a
superfamily such as an immunoglobulin, a kinase, etc. Conversely, if the
sequence was a Repetitive DNA Element, it would need an entirely
different approach for its study.

This is where the power of database searching comes in handy. The
principle aim of database searching, in general and with BLAST, in
particular, is to reveal the existence of similarity between an input
sequence (called 'query sequence') that a user wants to find more
information about and other sequences (called 'target' sequences) that are
stored in a biological database. This is usually the first step a researcher
takes in determining the biological significance of an unknown sequence.

Given the size of biological sequence databases maintained by NCBI
(the non-redundant set of sequences were estimated at 540 million residues
in 2004), database searches usually reveal sequences that have some
degree of similarity to the query sequence. These sequences from the
database that come up with similarities with the input sequence are
commonly referred to as 'hits'. Once such hits are found, users can draw
inferences about the putative molecular function of the query sequence. A
thumb rule for drawing inferences is that two sequences that share more
than 50 per cent sequence identity are usually similar in structure and
function. Under such conditions, the major sequence features of the two
sequences can be easily aligned and identified. If there is only a 25 per
cent sequence identity, there may be some structural homology, although
in such situations, the domain correspondence between the two proteins
may not be easily apparent. It is also generally accepted that sequences that
are important for function (and therefore, for the survival of an organism
or species) are generally conserved.

An example where a database search resulted in an important discovery
was the finding reported by Doolittle et al. (1983) of the similarity between
the oncogene, v-sis, of Simian sarcoma virus (an RNA tumor virus) and the
gene encoding human platelet-derived growth factor (PDGF). The v-sis
gene was the first oncogene to be identified with homology to a known
cellular gene. This discovery provided an early insight into the critical role
that growth factor signaling plays in the process of malignant
transformation. Another example of the value of database searching was

Introduction to Basic Local Alignment Search Tool 27

the discovery that the defective gene that caused cystic fibrosis formed a
protein that had similarity to a family of proteins involved in the transport
of hydrophilic molecules across the cytoplasmic membrane (Riordan, et.
al., 1989). Cystic fibrosis is the most common inherited disease in the
Caucasian population and affects the respiratory, digestive and
reproductive systems. It is now known that mutations in the cystic fibrosis
gene lead to loss of chloride transport across the cell membrane, which is
the underlying cause of the disease.

Performing a BLAST Analysis

Before we can build a BLAST application, we need to understand how
BLAST searches are performed using the NCBI BLAST service. BLAST
is actually a suite of programs - the particular choice of program(s)
depends on the type of input sequence (amino acid or nucleotide) and the
type of the database to be searched against (protein or nucleotide). The
most commonly used search programs and their applications are described
in Table 2.1.

28

Table 2.1. BLAST programs

Program
BLASTN

BLASTP

BLASTX

TBLASTN

TBLASTX

Comparison
DNA vs. DNA.
Compares a nucleotide query
sequence against a nucleotide
sequence database.
Protein vs. Protein.
Compares an amino acid query
sequence against a protein sequence
database.
DNA vs. Protein.
Compares a nucleotide query
sequence translated in all reading
frames against a protein sequence
database.
Protein vs. DNA
Compares a protein query sequence
against a nucleotide sequence
database dynamically translated in
all reading frames.
DNA vs. DNA
Compares the six-frame translations
of a nucleotide query sequence

Application
Find DNA sequences that
match the query

Find identical (homologous)
proteins

Find which protein the
query sequence codes for

Find genes in unknown
DNA sequences

Discover gene structure.
(Find degree of homology
between the coding region

against the six-frame translations of of the query sequence and
a nucleotide sequence database. known genes in the

database.)

In summary, the available BLAST options are:

1. For nucleotide sequences: BLASTN, BLASTX and TBLASTX

2. For amino acid sequences: BLASTP and TBLASTN

In the simplest case, we need the following pieces of information to
perform a BLAST search using NCBI's web-based service
(http://www.ncbi.nlm.nih.gov/BLAST/):

1. An input query sequence (this can be a nucleotide or amino acid)

2. The database to search against (this can be a nucleotide or protein
database)

Introduction to Basic Local Alignment Search Tool 29

3. A database search program (any of the five available BLAST
options)

Additional parameters such as the matrix and E-values also need to be
set. Once the user submits the necessary information, the BLAST engine
responds with a message informing the user that the request has been
successfully submitted and placed in a queue. The server also provides an
estimate of the time in which the results will become available for viewing.
The BLAST output itself consists of a header that provides information on
the specified BLAST parameters, the request ID for the search, the length
of the query sequence and the database used. Fig. 2.1 - 2.3 show the results
immediately after initial submission of and the output of a BLAST search
performed with the human cystic fibrosis transmembrane conductance
regulator (CFTR) mRNA sequence (gi: 90421312). Fig. 2.1 and Fig. 2.2
show the request ID (RID) that uniquely identifies this particular search
job that was submitted to the BLAST queue. We will learn more about
RID in Chapter 3 when we build the functionality to perform BLAST
searches using the NCBI QBlast service. Fig. 2.2 provides a view of the
header information present in the BLAST search results.

Below the header is a line up of sequences from the selected database
("hits") that match the query sequence along with the number of matches
found (Fig. 2.3). A mouse-over on the first line reveals information on the
origin of the sequence (for example, whether it is a human or a mouse
sequence, the name of the gene, if known) and the score (Fig. 2.4).
Sequences on the top are more significant (have better matches to
sequences in the database and thus, have higher scores) than those at the
bottom (lower scores).

30

• • i i g i t i i i g i i i i i ^ ^
He Edit View Go BcioVms&s loch tJe^

• ^Zf ' * N |] * % hc!.p://w/w.ncb.rJni.r«i-i-9>//W6se/EsaK.a "^ i!j^ Go *|Gj

iiiiiti
TaisliliKin Htlnwi rssula for m Rll

I Yo5.¥ request lus beert raccessMy sifcoiitted md put ifito the Blast Queue.

I Qiiey = g3j90421312 ('*> 132 ktrers)

S Tl-ie request I D is ;11 ̂ 3815834-25871-07^819-1810 BL^STCM

; Th^ results >txti eslHialtd UJ be Tc-idy iji 10 si-t'niis hut may b^ dons soovin.

I f'JcasE iwes:; "FORIu'lATI" vAsdnfOV.'wish'.Ki cheshyiiunsstAs. Vp\iiii«y ehiuige Ihe foimaiimg oplicns for
j ypursesiiStvklhf fctimUHow^KiffSSs "FORMATI" f.g#:̂ Totiiuaxe aSsoteqU'SsE ifi'Siits K'Fi$ iWt:m-A stmch
i i;,y ^nteruig. any othai valid ic=(|̂ iesi ID to s:;e slherfecwil jobs.

Fig. 2,1. Submission of a sequence to the BLAST queue

HI»itisJill4»liiiiWili4.iawiliJtw

air-- .••• ••
f ; V .::t::.:;o . tr

' BL\STJI2.:.14 rM«v-G".2(106']

I .3ingS,-.;i Ehsiwj, ZJî sn^ Zh'&ng, S-d-jh Uill-ii, «;EI David J . Lipiiisft
I 119371, "Gapied BLAST sh'.l P3I-1I*ST: a mw asriec!,E.ioi< o£
I pro&nir. c!;4CM:.̂ -*se st&rsh pr-^araws", Hii^riciir A -̂3cl3 I'esr. iS;j&3S ,i'lCC

I HiP: iii9S':&sj'!-.:^rn-a-'Si;'.'^-j:ii.&.Pi*3-fo^

5,:,^,,_7^-s ^c•'tt|«^,ce'^.- 17,333,791,7!S r...nca; l e t t e s r j

r.i.-1..!...•!..•; r - •..•! I":

criiKi-:.:caH!:i; r^a'-is^'f.'f, ^Tl'-bjr.f!!ii;i ci-rs'.^vrc; (.'."ib-r.'^i"! Iv '". ^'Mrjuji* 7t

!.(:r,«>:h-!:U.':

Fig. 2.2. Header information in BLAST search results

Introduction to Basic Local Alignment Search Tool 31

|tj i i i;i| ifi j j i l l,i#lii ipii[fi lt»jicif^

t e g u j a c i c , *TE'-bis=iiiig ;

h.m!lw.'»»-f>ii».'^.s^'.^>^P2hsi^&sdi:ic0*'iOiZiM2

Fig. 2.3. Alignment of BLAST hits to the input sequence

: :i|iiliiMi«,iiiilli|^fSiiliit*

:.^.j ' L] " ^ • ^ -/.--J K | 1 ; i httpj//wwA.nd3inlfTi.rih_^gDv/Wast/fe?tcg!

0
^S «3 Go i i U

Sequ. i j r o d ' J C l n o a l g r . i l l c a n t i a l l o t i m e o t s

£-j*i r.n 519310.

3J-.L^SSli2ii---*.£.?.?.Ly^-l!£.l"d-L'21 H " ^ « s a p i e n s f^yst- tc f i f o r o g i s t r

g,r,,!,,l^'^:^,?,l,l,3,^!:l^--°'^-'y-'3.-..-^.l."^^-^'.'^^" H!xr.sii c y s t i c f i b t r o s i s laPJiA, e

PBEt'TCTED: P a n c r o g l o d y t e s s i i s i

C v s t e i d e - t r s K hCFTP itt pGEKttE, CD;

^^1-Tf j.'Sg-jZ'l j rctiL'TM 0 0 i o 3 2 9 3 8 . l i E iacaca iisxiiact-a c v 3 i : i c f i f i r o s J.T6-I2']i EcIIL'TM 0 0 1 0 3 2

i : 3 0 ^ 7 1 7 0 1 g ^ | A F 0 1 3 . ; : A r a i 5 7 S '

s^?imii_^I!i:

^U7>=a|c-?r |HK n o

s c i e : filiL-o

Su.? s e r o s a t -yar i c t i t r o s i a t r a u s i i e

r i .^;^720 O t y c t o l - a g u s c u n i c u l i i s c b i ^ t "

^rs. j I C a m s f a j i i l l i a r i s

73 l e i I g b t i r T 6 0 4 2 3 . 1 ! Can i s i :

S € i C flBL-i

i n s c ^ s t :
y c t o l & Q U S c n n i c u l u s CfTK

L - l l B 9 ^ . I C c l . l 6 | «
e , | * 9 5 4 o l -) 0 | g l . .
r . i i a s i w S j J ' H t b
g i | & S - : . 1 5 7 T | , | -

(5 1 | S - ; - , i < J 7 . 5 | o t

; , . | ^ ? : - i ? . l E S I , i l .

2 l J i ! z J < " l : ' ' " •) • • • :

! .03e813- t

Si!?«9ii'
DO) 5?;.! CO
00.15MKSI

s-Xiiwm

i>^''«*'!ii

.11

.11

. M

.11

.11

.11

.11

.11

.11
11

Hc-rnD s a p i e j i s BAC
Hoa-o s a p i e n s i s i
Kon*3 s a p i e n s i s o i i a t e
Uoido s a p i e n s l a o l a c e
Hoim s a p i e n s l a o l a & e
KoiitK? s a p i e n s i 3 0 l - s e e
Uotv£j s a p i e n s I s o l a t e
Kouc- s a p i e n s I s o l a t e
Hone s a p i e n s i s o l a t e
HouiO s s p i e n s i s o l a t e
HotrC' s a p i e n s i s o l a t e
H a o o s a p i e n s i s o l a c e

irciitc
HoisiO i<apieriS« i s o l .

l a t e c i \ : t - l l589__A
C-i;!:rl3838___B
cIt;L-lI5Zl__A
cft .L-lt37b__B
c - f e r l l S S l ^ A
ctci :10376__A

c±ct-13B3B_A

u£i,E. I137-?.__g
c f c t l l S 2 1 _ &

chlOC

Fig. 2.4. Definition of database hits

•
H

B

i lB

32

Developing the SwingBlast Application

Now that we understand the significance and the working of the BLAST
engine, we can begin our journey into the world of Java development by
building a BLAST application, which we will call SwingBlast, from the
ground up. In this Chapter, we will create the user interface elements using
Java Foundation Classes or JFC, also known as Abstract Windowing
Toolkit (AWT) and Swing classes. In Chapter 3, we will write the actual
code to run the BLAST searches based on the NCBI BLAST engine. In
each case, we will build the application in an iterative fashion thereby
demonstrating a step-wise approach to building software - creating a basic
program structure or framework and adding bits of code in an incremental
fashion to enhance its functionality.

The steps for building Java applications from a software engineering
point-of-view are as follows:

1. Develop use case scenarios

2. Define software modules

3. Define classes

4. Write the Java code (business logic)

5. Run and analyze output

We will begin by creating use cases that define the actions that a user
may wish to perform on the application and the behavior that a user
expects from the application in response to those actions. Use cases,
simply stated, are individual scenarios that allow software developers to
layout the behavior and functionality expected of the software. To create a
Java based BLAST application that allows users to submit sequences and
to retrieve the results of the search operation, we can envision the
following use case scenarios:

1. User provides input information to the application

2. User submits the input information to the NCBI BLAST server

Introduction to Basic Local Alignment Search Tool 33

3. The application displays the selected BLAST results in graphical
format

Fig. 2.5 provides a UML diagram that describes the interactions
between the user and the application. The specific details about the
expected input and output are as follows:

1. User provides input information to the NCBI BLAST engine: The
input data can be a sequence or, if available, the corresponding
sequence id from GenBank® (an annotated repository of all publicly
available DNA sequences maintained by the NIH), which uniquely
identifies a sequence within the GenBank database. The application
behavior in either case is as follows:

a. The input information is a nucleotide or protein sequence: In this
case, after the sequence information is provided, the application
automatically recognizes the sequence type, loads it in the Fasta
format (Fig. 2.6) and presents the appropriate valid BLAST
options (for example, BLASTN for nucleotide and BLASTP for
protein etc., as explained in Table 2.1). The invalid BLAST
options are disabled.

b. The input information is a valid GenBank id (also called the GI
number). In this case, the application downloads the sequence
from GenBank and displays it in the appropriate format as stated
above.

2. User submits the sequence to the NCBI BLAST server. Once the
sequence becomes available to the application (either directly
supplied by the user or downloaded from the GenBank id), the user
selects the necessary BLAST parameters (the type of BLAST
program, the database, the matrix, the E values, etc.) and hits the
"Submit" button. This sends the sequence to the NCBI BLAST server
for the search operation.

34

ProyiiJciiirArfiiitoiTnaHoritothea|>plica(iaii

3ubml Bfc a jq iwi i iB to the HCBI BLAST servw

Disftay the BL.A;5T i"e:su» in a yixi|ihital tamat

Fig. 2.5. UML diagram for the SwingBlast use cases

The last use case ("User wants to browse the BLAST results in a
graphical format") arises from a need to view the BLAST output, that is,
the list of sequences from the database that matched the input sequence in
a graphical and interactive fashion.

Koador o n i r s l line beg inn «!ig with a ' '> '-symba!

Sequer iM Bsgr in ing f rom s e ^ n d !,ne

jATTnCi,i i :r i .«A-i-sCATCA:A(XAGCTCAOAGAiiAACXTT"ACtWCiOXACCCI.uiGTiCTAG'
TCTTTW:ATT;»GGiG':Tr5»GCiXfc3J,C*KX:CTi5;CA'553iC:CCAX&;D:GAC>iiS/.0:A:GCtJAa
CTti:cCTCTa;«li,A3COV««C'S1TbtCTKAfcAClTITI~TtAa:TG.SiO;M3ACC
iK!i7trIG'„•'. l'V.x:C::'r4\i.»TTCTr ki'.kf ATi>TiC!;Ai,*7C-rrTlTTC,TTai,TTCT.rXTGiCA,'iTC"W
CTCAA A i AT7K.A '„ ,V7 i!:-,',ATiy.6AT,'iC4GACCTQ:,:TtC», AJGI. AAAiTCCTAAACTC ATT f, hT^C CCT
lCa;CG/tTi;:T-T:TCT«AGATTritGTTCT,WGQAiTCiTTrT4TATTTA&30aACHCACCl/,A;CA
bTACAt=i:r1\:i-::TlACT&;i4AGAATCATAO:T1~:crA:GiCO:jJA1'tiCAi.Gi^AG3AA&XX~^
CC.i;TTTATCTA3iCAIA9:.CTTAT.XCTrCTCTTriTT-;TC5i5GACj;CTiGCTCCTACAr.XAG.:CftTTTT
TC.w:j:TTCATi"AC,,TTGr.AATl>C*C.«C.\G*ATAC.CT«GTTTA-,TTTCn\TrrATAiGi«r,ACTrr.',AS-.
CTC.TC,UV:.CCGTG:TCTAGATAAAATAAC-TATIGC4rtiAC:T5TriGTeTCCTTTCC.AACtt.'iCCTC-iiG<,
AAitWjitGAiiG*crr&:Ariiii:/;AC«iTcGKT3G«-CGtTLerrittAAG'naK;*:i"x-CA-raii
GITAATCTGGGiGTTi—TiCAr#:,GGTCTiiCCTTr;rG:G5ACTlir.r.TTTr£TGAT44T:ir-rj:rcrTTTT

Fig. 2.6. A sequence represented in Fasta format

Introduction to Basic Local Alignment Search Tool 35

Designing the SwingBlast Java Application

The SwingBlast application involves data input from the user (the
sequence or the GI number which identifies the sequence), manipulation of
the input data ("BLASTing" the sequence against the selected databases),
and visualization of the results of the database search (the BLAST output).
Clearly, there are different parts to the application each of which performs
a different function. We will follow the MVC framework we described in
Chapter 1, while designing the various pieces of functionality of the
SwingBlast application.

In line with the incremental approach to building the SwingBlast
application, we will as a first step, create the basic framework application
that will perform two basic functions - allow users to input a nucleotide
sequence to the application and to format it in the Fasta format. The
structure of the Java application we will build is shown in Fig. 2.7 below.

Dir«tory to store project files

SwingBlast
Java packages

-src
Java class definition files
(sbDred as Java fibs)

SwingBlast
- SwingBlastl.l
- SwingBlastLZ
- SwingBlastl.S

- SwingBlastl.n

Fig. 2.7. Layout of the SwingBlast application

As depicted in Fig. 2.7, we define a project directory called SwingBlast
to store the project files. We create a src (source) directory, in which we
will create the packages org, org.jfb and org. jfb.SwingBlast to
provide a default hierarchy for the class files. This layout also helps to
group the necessary functionalities of the application, for example, by
placing all the GUI classes in the SwingBlast package, all the source code
files in the src directory and so on . SwingBlastl.l, ..., l.n, etc., are the
Java class definition files, where the numbers refer to versions of the

36

software as we build functionality step-by-step. For the SwingBlast
application, the package name we will use in our Java class definition files
will be org. jfb.SwingBlast. After the package is declared, we name any
import statements to be included in the program. Import statements load
the classes that encapsulate functions necessary for the application to run.
Since classes are contained in packages for the purpose of grouping
common functionalities together, entire packages may be imported, if
necessary. By using wildcards with import statements for example,

import j ava.awt.*;

we can ensure that all classes in the AWT package, which provide the
Java graphical user interface elements, are available to the application.

As we mentioned earlier, the SwingBlast application takes data input
from the user and responds to the input by taking appropriate actions. To
make the application respond appropriately to user initiated actions, we
need to add what are known as event listeners to the code. This
functionality allows us to add events to menu buttons that respond to
simple actions such as clear user input or quit the application, etc., as well
as complex functionality, some of which we will demonstrate in this
Chapter. To begin with, we will learn the basics of the Java event model
and see how to add events and event listeners in the next few sections.

Java Event Model

The Java Event Model is based on the Observer design pattern also
known as the Publish-Subscribe design pattern and a delegation model
that allows a source to propagate an event to the relevant observer. The
Publish-Subscribe design pattern is based on the Observer pattern where
the Observer object listens for events from the Subject object. The Publish-
Subscribe design pattern is similar to the Observer design pattern except
for additional element called the Event Channel that separates the
Observer (called Subscriber in the Publish-Subscribe design pattern) and
the Subject (called Publisher in the Publish-Subscribe design pattern). The
Event Channel performs the role of a messaging hub to broadcast events
from Publishers to all the associated Subscribers.

Java uses what are known as EventListener objects to listen to changes
to AWT or Swing components. Under this model, observers can be

Introduction to Basic Local Alignment Search Tool 37

registered to listen to an object via Listener methods depending on the type
of the listener or the kinds of events one is interested in. The general
format for such methods is addxxxLis tener() , for example,
addMouseListener(MouseListener 1), which is a method to listen to
any mouse event generated by the object the listener is registered to. The
listener object provides a callback method that is called by the object that
is generating the event. The callback method will have the appropriate
parameters that define such data as the source (for example, JButton,
JPanel, or a main window, etc.) and type of event (for example, a mouse
click event, or a focus event when selecting a particular Swing component
or an action event, like pressing a submit button).

In Java, all events are executed in the same thread as the window
painting event (via p a i n t {)). This thread is called the event-dispatching
thread. For this reason, code in an event listener should be fast to execute
to avoid interference with the drawing events.

Two types of events are defined in Java: low-level events and semantic
events. Low-level events represent system related events that emerge from
objects such as mouse and keyboard, etc., while semantic events arise from
operations such as clicking on a button, selecting a text in a drop down
box, etc. Depending on the situation, it is advisable to listen to semantic
events whenever possible since they are more specific in nature - for
example, listening for a button event inside the component that contains
the button, rather than a mouse event, which can occur outside of a
component.

Adding Events to Applications

To add events to applications, we will need to add two import
statements at the beginning of our code:

import j ava.awt.event.ActionEvent;

import Java.awt.event.ActionListener;

These Java packages provide the classes that are needed for triggering
and handling events. Let's take the example of making the SwingBlast
application respond to actions initiated by the user by clicking on the Quit
button under the SwingBlast Menu. To create the Quit button, we create

38

an object called qu i t l t em of type jMenuitem with the following piece of
code:

quitltem = new JMenuitem("Quit");

To associate quitltem with a mouse click event that leads to closing the
application, we first instantiate an ActionListener. Next we register the
new listener to receive events from this button by calling the button's
addActionListener method:

qui t l tem.addAct ionLis tener(new Act ionLis tene r () {
publ ic void actionPerformed(ActionEvent e) {

Sys t em.ex i t (0) ;
}

}) ;

Actions triggered by mouse events such as a button click will also call
the actionPerformed method from that listener and pass it an
ActionEvent object as shown in the code above. That ActionEvent object
contains all the properties of this event. In the early days, in C, you would
have to catch the system interrupts and analyze the interrupt number
received to figure out the type of event (viz., a keyboard or a mouse action
or a USB port sending or receiving information, etc.). In Java, Swing does
that for you by encapsulating all the hardware interactions into its event
framework. This is undoubtedly much easier and means less work for the
Java coder. Inside that actionPerformed method, all we need to do is to
simply read the ActionEvent properties and code the appropriate action to
respond to the event.

The code to handle events associated with the clear button is
constructed in a similar manner. The text box to enter sequences was
earlier created as an object of type JTextArea using the code:

sequenceArea = new JTextArea();

The event handling code for the clear button is similar, except that the
exact action specified is that the text in the sequenceArea box is set to
nothing (""):

clearButton.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

sequenceArea.setText("");
}

});

Introduction to Basic Local Alignment Search Tool 39

Designing the SwIngBlast GUI

We can now create the first version (1.1) of the swingBlast application.
SwingBlast version 1.1 will have a text box to enter sequence data, a
Clear button to delete the entered sequence and a menu bar for quitting the
application (Fig. 2.8).

Swinrini'i:.!

Oiiil

Sl.'lllll.'ll! I>

Clear

Fig. 2.8. SwingBlast Version 1.1

Let's now write the code that will create SwingBlast version 1.1. At the
most basic level, our code will look like Listing 2.1.

Listing 2.1. Coding SwingBlast version 1.1

package org . j fb .SwingBlas t ;

import javax.swing.*;
import j ava.awt.*;

public class SwingBlastl_l extends JFrame {
private static final String APP_NAME = "SwingBlast";
private static final String APP_VERSION = "Version

1.1";
private static final Dimension APP_WINDOW_SIZE = new

Dimension(500, 300);

private JComponent newContentPane;
private JTextArea sequenceArea;
private JScrollPane scrollPaneArea;

40

private JButton clearButton;
private JMenuItem quitltem;

public SwingBlastl_l() {
super(APP_NAME + APP_VERSION);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
newContentPane = new JPanel();
newContentPane.setLayout(new BorderLayout());
setContentPane(newContentPane);

JMenuBar menu = new JMenuBar();
JMenu swingBlastMenu = new JMenu(APP_NAME);
quitltem = new JMenuItem("Quit");
swingBlastMenu.add(quitltem);
menu.add(swingBlastMenu);
setJMenuBar(menu);

// The sequence pane
JPanel sequencePanel = new JPanel();
JLabel sequence = new JLabel("Sequence");
sequenceArea = new JTextArea();
sequenceArea.setLineWrap(true);
scrollPaneArea = new JScrollPane(sequenceArea);
sequencePanel.setLayout(new

BoxLayout(sequencePanel, BoxLayout.LINE_AXIS));
sequencePanel.add(sequence);
sequencePanel.add(Box.createRigidArea(new

Dimension(10, 0)));
sequencePanel.add(scrollPaneArea);

sequencePanel.setBorder(BorderFactory.createEmptyBorder(10,
0, 10, 0));

//Lay out the buttons from left to right
JPanel buttonPane = new JPanel();

clearButton = new JButton("Clear");

buttonPane.setLayout(new BoxLayout(buttonPane,
BoxLayout.LINE_AXIS));

buttonPane.add(Box.createHorizontalGlue());
buttonPane.add(Box.createRigidArea(new

Dimension(10, 0)));
buttonPane.add(clearButton) ;

JPanel jPanel = new JPanel();
jPanel.setLayout(new BorderLayout());
jPanel.setBorder(BorderFactory.createEmptyBorder(0,

10, 10, 10));
jPanel.add(sequencePanel, BorderLayout.CENTER);
jPanel.add(buttonPane, BorderLayout.SOUTH);

newContentPane.add(jPanel, BorderLayout.CENTER);
newContentPane.setPreferredSize(APP_WINDOW_SIZE);

Introduction to Basic Local Alignment Search Tool 41

//Display the window
pack();
Dimension screenSize =

Toolkit.getDefaultToolkit().getScreenSize();
setLocation((screenSize.width

APP_WINDOW_SIZE.width) / 2,
(screenSize.height

APP_WINDOW_SIZE.height) / 2);
setVisible(true);

}

public static void main(String[] args) {
SwingUtilities.invokeLater(new Runnable() {

public void run() {
final SwingBlastl_l view = new

SwingBlastl_l();
}

});
}

}

As described earlier, we begin by declaring a package, which in this
case is named after the swingBiast application that we are building. The
common prefix j fb is short for Java for Bioinformatics. Since we are
creating a Swing based GUI to manage sequence input and analysis, we
have named the class "SwingBiast". The suffix 1_1 at the end of the class
name reflects the fact that this is version I.I of the SwingBiast
application.

A simplified general format of the class declaration is as follows:

class_modifiers class <class_name> extends <superclass_name>
{

/* l i s t of c l a s s da ta f i e l d s */
/* l i s t of c l a s s methods */

}

In our case, the modifier for the SwingBiast i_i class is public which
means other methods or classes outside of this class may access this class:

public class SwingBlastl_l extends JFrame {

}

By convention, there can be only one public class in a Java file; further,
the name of the Java file must match the name of the public class. For this

42

reason, the code in Listing 2.1 must be stored in a file called
SwingBlastl_l.Java.

Note the use of the extends keyword in the class declaration. The
extends keyword indicates that the swingBlast i i class inherits methods
from the class JFrame. In object oriented terminology, SwingBlastl_l is
called the sub or child class while JFrame which it derives from is called
the parent (or super) class. The extends keyword obviates the need for
instantiating JFrame separately in the swingBlas t i i class to access its
methods. Inside the SwingBlastl_i class, we can call any of the methods
available in the parent JFrame class.

JFrame is a Swing container that serves as the top-level or main
application window. Top-level Swing containers provide space within
which other Swing components can position and draw themselves. Swing
components are also called "lightweight components" because they are
written in Java versus AWT components or "heavyweight components"
which are native components (written in C or C-I-+, etc.) wrapped into Java
classes. It is important to know what class of components are being used.
As a rule of thumb. Swing and AWT components should not be mixed or
used together in the same application, as this may lead to unpredictable
behavior during repainting, and may make the application hard to debug.

The Swing framework provides a mechanism for interactions with
individual components through event handling. This is what the two
import statements at the top of our code in Listing 2.1 do:

import javax.swing.*;

import j ava.awt.*;

The first package provides a set of lightweight components while the
second contains all classes for dealing with graphics, events, images, etc.
Fig. 2.9 shows the superclass hierarchy of the JFrame class where each
subclass is shown below its parent class. According to this scheme, the
JFrame class is derived from the Frame class, which in turn is derived
from the Window class and so on. The Frame class defines a top-level
window with a title and a border and has methods such as getTitle,
se tTi t le etc., which respectively get and set the title of the frame. By
definition, the JFrame class derives these methods from the Frame class
(and other superclasses). Every main window that contains Swing
components should be implemented with a JFrame. Examples of other

Introduction to Basic Local Alignment Search Tool 43

containers are JApplet, JWindow and JDialog. In our application, JFrame
will serve as the top-level container. JFrame in turn will provide the
framework to contain other components like for example JPanel, JButton
and J Menu, etc.

java.lang.Object

' • java.awt.Component

' y java.awt.Container

I *- Java. awt.Window

! f Java. awt. Frame

I ^ javax.swing.JFrame

Fig. 2.9. Class hierarchy of the JFrame class

The next three lines of code define constants for setting the name
(swingBlast), Version (1.1) and the window size (500 x 300 pixels) of the
application. We will use upper case names separated with underscores '_',
as a naming convention for our constants :

private static final String APP_NAME = "SwingBlast";

private limits the accessibility of the variable called APP_NAME to other
objects within the same class. The keyword Static means that the value of
the variable is shared by any object of that same class (this also defines
what is known as the class variable). This means that if one object
modifies it, the other object can see the new value. A non-static variable,
on the other hand, is modifiable only by the object instantiated from within
the same class. The keyword final means that the variable cannot be
changed and therefore it is a constant. The constants APP_NAME and
APP_VERSiON are of type String as indicated in the code. To summarize,
APP_NAME is a constant accessible only from within the class and it has the
same value for any object belonging to this class.

The next 5 lines declare Swing components of the types JComponent,
JTextArea, JScrollPane, JButton and JMenuItem respectively. All Swing
components (except top-level containers) whose names begin with "J" are
derived from and inherit from the JComponent class such as JTextArea,
JPanel, JScrollPane, JButton, and Jmenultem. JComponent is thus the
base class for all these Swing components.

44

The next line:

public SwingBlastl_l() {

defines the constructor for the SwingBlastl_l class. Note that it is
declared public, has the same name as the class itself and does not return
anything. The swingBlas t i i constructor also does not accept any
parameters and therefore is the default constructor for the swingBlas t i i
class.

The super keyword in the SwingBlastl_l constructor calls the
constructor of the superclass (hence the use of the term "super") - which
in this case is JFrame, since swingBiasti_i "extends" JFrame. Next it
passes the String variables APP_NAME and APP_VERSION to the JFrame
constructor to set the name and version of the application. The description
of the JFrame constructor that is used is shown below. This information is
available from the Java 2 API documentation (Fig. 2.10).

lU iS t^Um ^.Wl-^lteilpi PlnrtiJi, i § a
tfe m Htm ^ ^iAf-wi-i l<>sb. Ueb

Java 2 Piatlorm
Stsnilafi i Ed. 6.0

jjjoftfejfeilif

i:!lgii&22i±ai!IS*I:

jCoffi3g|3oj-

•{p.gJ4i;:if i e

mm
J--MiBtt?.rf»lF;Blg»SiKg

m J=r<aim Cfcva Z WaSlorin SI S.Q>

© <k3 a

Constructor Detail

-•!i5in;;lor seis the î oaij-oa.ent's locale pnpr^j lo iiis faliie fetunie'! ŝ y JC-jR.f(ones;i; genteK^sCELoi

CrealBj i ?K«!iwci ftie ^?:ci6'-fJ %«pi5ic '̂~<5-tf ^tgnr-scinnof as.:Te«.'fcvice -iml ahfe

Tliit cx.:isSrufior s^U il:r coriif-otiî iii's locals propKl? to i)i5 v;,lue rsitaTiBtl by •iC&>vomii,

Pai-3IB?IS'IS::
yc - the Si-apl:ic5Ci:nf sgutuc

'Op^ftesl O P r̂̂ e-fflXis ^jH!#Ji#* Pt-feieii;»

I ihar k \is&i to £ I'Mtnicr tise nii.fiieryslwidefjiJ!

Fig. 2.10. Java 2 API documentation on JFrame

Introduction to Basic Local Alignment Search Tool 45

Name: JFrame(String t i t l e)
Descr ip t ion : Creates a new, i n i t i a l l y i n v i s i b l e Frame with

the spec i f i ed t i t l e .

The same result can also be achieved by explicitly setting the title as
follows:

setTitle(APP_NAME + " " + APP_VERSION);

The line:

setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

uses the setDefaul tCloseOperat ion method from the JFrame class
which is defined as follows:

public void setDefaultCloseOperation(int operation)

and sets the operation that we want the application to perform by default
when the user attempts to close the frame. We have specified the operation
to exit the application by using the EXIT_ON_CLOSE option.

Coding the SwingBlast GUI

The general scheme for creating and adding Swing components to an
application consists of the following steps:

1. Create an instance of a top-level container such as Jframe
2. Use a layout manager to specify the location and size of the

components
3. Specify the top-level container's content pane to hold the individual

GUI elements

To begin with, we create an instance of the JPanel class (called
newContentPane), which defines a generic container as the top-level
container. We will use this container to hold our GUI elements.
Components are positioned inside a top-level container using what are
known as layout managers in Java. The area within a top-level container
where individual components (labels, buttons, etc.) are placed is called the
content pane. To specify the content pane of the newContentPane
component as the content pane for storing the visible elements of the

46

SwingBlast application, we use the top-level container's setContentPane
method:

newContentPane = new J P a n e l () ;
newContentPane.setLayout(new BorderLayout()) ;

setContentPane(newContentPane);

Here we have used the BorderLayout layout manager to align and
position the components. Next we add the menu bar (called swingsias t)
and a single menu item ("Quit"):

JMenuBar menu = new JMenuBar();
JMenu swingBlastMenu = new JMenu(APP_NAME);
quitltem = new JMenuItein("Quit");
swingBlastMenu.add(quitltein) ;
menu.add(swingBlastMenu);
setJMenuBar(menu);

Note that components are added using the add method as shown here for
the SwingBlast menu:

menu.add(swingBlastMenu);

Next we create the sequence pane and add a component called
sequenceArea of the type JTextArea that simply defines an area for
entering text:

// The sequence pane
JPanel sequencePanel = new JPanel();
JLabel sequence = new JLabel("Sequence");
sequenceArea = new JTextArea();
sequenceArea.setLineWrap(true);
scrollPaneArea = new JScrollPane(sequenceArea);
sequencePanel.setLayout(new

BoxLayout(sequencePanel, BoxLayout.LINE_AXIS));
sequencePanel.add(sequence);
sequencePanel.add(Box.createRigidArea(new

Dimension(10, 0)));
sequencePanel.add(scrollPaneArea);

sequencePanel.setBorder(BorderFactory.createEmptyBorder(10,
0, 10, 0));

To provide scrolling capabilities inside the text area (especially for large
sequences), we have associated the JScrollPane object with the
sequenceArea. The c l e a r button is added in a similar fashion. Finally, we
add the main() method to the program. The main() method actually

Introduction to Basic Local Alignment Search Tool 47

performs the job of creating an instance of the class and running the
application. The Java Virtual Machine (JVM) calls this main () method
when we pass the class name to it. Every Java application must contain a
main() method whose signature looks like this:

publ ic s t a t i c void main(S t r ing[] args) {
/ / s t a t emen t s ;

}

The JVM would eventually complain about a class if the main() method
was missing. The simplified general format for a method in Java is:

method_modifier r e tu rn_ type method_name (arguments) {
body of the method;

}

In our case, the method looks like this:

public static void main(String[] args) {
SwingUtilities.invokeLater(new Runnable() {
public void run() {

final SwingBlastl_l view = new SwingBlastl_l();
}

});
}

}

The line:

SwingUtilities.invokeLater(new Runnable() { }

indicates that the painting of the GUI takes place in a separate thread
(the AWT thread or the event-dispatching thread) and is a way of
separating the GUI processes from the business processes (such as a
BLAST operation) as strongly advised in the Java guidelines.

A thread is a process that is capable of running concurrently
alongside other threads or processes.

The event-dispatching thread is the thread responsible for handling
events and repainting of components. It is therefore very important
to avoid any running heavy resource consuming code in the event-
dispatching thread.

48

The keyword Runnable defines the type of object that will run in a new
thread. The invokeLater() method causes the event-dispatching thread to
call the run() method of the Runnable object which is passed to
invokeLateri) method after all pending events (such as repainting a
component, etc.) are processed. The run() method of the Runnable object
is in charge for creating a SwingBlast object through the constructor
method of SwingBlast, which in turn performs all the specified actions,
such as creating the top level window, setting its name and laying out the
GUI elements, etc.

Compile and run the code shown in Listing 2.1. As you will notice, the
basic framework as described above does not do anything useful apart
from displaying the graphical interface as shown in Fig. 2.8. The only
events the application can respond to so far are the default Minimize,
Maximize and Close operations through icons located on the top right of
the application window.

Coding the SwingBlast Business Logic

We will begin the process of building the business logic into the
application by adding code that will format the user entered sequence into
the commonly used Fasta format. We will simultaneously add code that
will calculate and display the size of the input sequence. We will then
incorporate a simple algorithm to determine the sequence type - that is, if
the user entered sequence is nucleotide or protein.

The Fasta format as defined earlier contains a header that begins with
the greater than symbol (>) and contains information about the sequence
such as sequence identifiers and size, etc. (which may be delimited by
separators such as vertical bars or spaces) on the first line and is followed
on the second line with the actual sequence (Fig. 2.6).

So how do we get the sequence entered in the text area to rearrange
itself in the Fasta format? As with any programming language there are
more than one ways of achieving this. We will use a method based on
Focus events to implement this. Focus events are triggered whenever a
component such as text area gains or loses focus. Focus events associated
with a particular component can be obtained by registering a
FocusListener with the component. When the component gains or loses

Introduction to Basic Local Alignment Search Tool 49

focus, the relevant method in the listener object (focusGained or focusLost,
respectively) is invoked, and the FocusEvent is passed to it. The general
method to do this is shown in Listing 2.2.

Listing 2.2. Adding Focus events and listeners to SwingBlast

sequenceArea.addFocusListener(new FocusListener() {
public void focusGained(FocusEvent e) {

}

public void focusLost(FocusEvent e) {
// add statements here

}
}) ;

We will design the code such that after a sequence has been added to the
text area, it will be converted into the Fasta format as soon as the text area
loses focus (for example, when a user navigates away from the text area to
another part of the application). Conversely, no action will be performed
when the sequenceArea component gains focus. We therefore want to add
program logic in the focusLost method, which gets activated after a
component loses focus, to achieve this. Listing 2.3 shows how to
implement this.

Listing 2.3. Programming the focusLost method

sequenceArea.addFocusListener(new FocusListener() {
public void focusGained(FocusEvent e) {

}

public void focusLost(FocusEvent e) {
// Retrieve the sequence in the text area
String seqText = sequenceArea.getText();

// Convert the sequence into Fasta format
String header = null;
int seqLength = 0;
String sequence = "";
String fastaSeq = "";

seqText = seqText.replaceAll("\\s", " ") ;
sequence = seqText.toLowerCase();
header = "> Sequencel";
seqLength = seqText.length();
fastaSeq = header + "|" + seqLength + "\n" +

sequence;

50

sequenceArea.setText(fastaSeq);
}

}) ;

For the header part of the Fasta sequence, we will add a generic label
(called "sequencer') to represent the name of the raw sequence entered by
the user followed by a vertical bar and the size of the sequence for the
purpose of illustration. Plug this into the main code and test the application
by pasting a sequence (such as the first few hundred bases of the CFTR
gene sequence shown below) into it.

AATTGGAAGCAAATGACATCACAGCAGGTCAGAGAAAAAGGGTTGAGCGGCAGGCACCCAG
AGTAGTAGGTCTTTGGCATTAGGAGCTTGAGCCCAGACGGCCCTAGCAGGGACCCCAGCGC
CCGAGAGACCATGCAGAGGTCGCCTCTGGAAAAGGCCAGCGTTGTCTCCAAACTTTTTTTC
AGCTGGACCAGACCAATTTTGAGGAAAGGATACAGACAGCGCCTGGAATTGTCAGACATAT
ACCAAATCCCTTCTGTTGATTCTGCTGACAATCTATCTGAAAAATTGGAAAGAGAATGGGA
TAGAGAGCTGGCTTCAAAGAAAAATCCTAAACTCATTAATGCCCTTCGGCGATGTTTTTTC
TGGAGATTTATGTTCTATGGAATCTTTTTATATTTAGGGGAAGTCACCAAAGCA

You will see that once the text area loses focus, for example, by clicking
on the SwingBlast menu, the sequence is converted into lower case and
formatted into the Fasta format (Fig. 2.11 and Fig. 2.12).

SiAiinyBlast

AATTGGAAGCAftATGACATCACAGCAGGTCAGAGAftAAAOGGTTGAGCGGC^
G 0 C AC C C AGAGTAGTAG G
TCTTTGGCATTAGGAGCTTGAGCCCAGACGGCCCTAGCAGGGACCCO,i..GC
GCCCGAGAGACCATGCAGAG
GTCGCCTCTGGAAAAGGCCAGCGTTGTCTCCAAACI I I I I I ICAGCTGGAC
C AG AC 0 AATTTTG AG G AA/i,
G G.*VTACAG AC AG C G C CTG GMTTGTCAG ACATATAC C.AWTC C CTTCTGTTG

Sequence ATTCTGCTGACAATCTAT
CTGAAAAATTG GAAAGAG AATG G G ATAG AGAG CTG G CTTC AAAGAWAATî C:T
AV^CTC,fl,TTAATG C C CT
TC G G C GATGI I I I I I CTG GAG ATTTATGTTCTATG GA^TCI I I I lATATTTAG C
GGAAGTCACCAAAGCA

Clear

Fig. 2.11. Unformatted nucleotide sequence

Introduction to Basic Local Alignment Search Tool 51

SwingBlast

> Sequencel |420
aattggaagcaaatgacateacagcaggtcagagaaaaagggttgagcggcaggcacccagagta
gtaggtctttggcattaggagcttgagcccagacggccdagcagggaccccagcgcccgagagacc
atgoagaggtcgcctctggaaaaggccagcgttgtctccaaactttttttcagctggaccagaccaattttg;
ggaaaggatacagacagcgcctggaattgtcagacatataccaaatcccttctgttgattctgctgacaat
tiatctgaaaaattggaaagagaatgggatagagagctggcttcaaagaaaaatcctaaactcattaat
gcccttcggcgatgttttttctggagatttatgttctatggaatctttttatatttaggggaagtcaccaaagcal

Sequence

Clear

Fig. 2.12. Fasta formatting of sequences (Text area loses focus)

In addition, a header line is added as specified in the code along with the
length of the sequence. Although the logic to convert raw sequence into
Fasta format does work as described, we need to incorporate a way to tell
the FocusEvent method not to take any action if the sequence is already in
the Fasta format (either because the sequence was pasted in the Fasta
format or because it was formatted by the user formatted by the user using
the FocusLost method) and therefore does not need formatting. This is
easily done by checking for the presence of the ">" character at the
beginning of the sequence as shown in Listing 2.4 below.

Listing 2.4. Checking for Fasta formatting of sequences

seguenceArea.addFocusListener(new FocusListener() {
public void focusGained(FocusEvent e) {

}

public void focusLost(FocusEvent e) {
// Retrieve the sequence in the text area
String seqText = sequenceArea.getText() ;

int idx = seqText.indexOf(">");
boolean fastaFormatted = idx != -1;

52

String header = null;
int seqLength = 0;
String sequence = " " ;
String fastaSeq = "" ;

// Check if sequence is in Fasta format
if (fastaFormatted) {

int returnldx = seqText.indexOf("\n");
header = seqText.substring(0, returnldx);
fastaSeq = seqText.substring(returnldx + 1,

seqText.length()).replaceAll("\\s", "").toLowerCase();
fastaSeq = seqText;

} else {
seqText = seqText.replaceAll("\\s", " ") ;
fastaSeq = seqText.toLowerCase();
header = "> Sequencel";
seqLength = seqText.length();

}

// Convert the sequence into Fasta format if not Fasta
//formatted

if (!fastaFormatted) {
fastaSeq = header + "|" + seqLength + "\n" +

fastaSeq;

}
sequenceArea.setText(fastaSeq);

}

To make the sequence align properly, we will use a monospace font
such as Courier. The code to do this is as follows:

final Font sf = sequenceArea.getFont();
Font f = new Font("Monospaced", sf.getStyle(), sf.getsize());
sequenceArea.setFont(f);

Run the code again. This time the sequence is properly aligned (Fig.
2.13).

Introduction to Basic Local Alignment Search Tool 53

SwingBlast

Sequence

> SsT-iencel I 420

aattggaagc aaat.gacat cac age aggt c agagaaaaagggtt.gagc ggcaggc ac c c agagt

agtaggtctt.tggcattaggagcttgagcccagacggccct.agcagggacccc age gccc gaga

gaccatgcagaggtcgcctctggaaaaggccagcgttgtctccaaactttttttcagctggacc

agac caattttgaggaaaggatacagac age gc c tggaattgtc agac a tatacc aaatc c c: tt

ctgttgattctgctgacaatctatctgaaaaattggaaagagaatgggacagagagctggcctc

aaagaaaaatcccaaactcattaatgcccttcggcgatgttttt-Cctggagatttatgttccat

ggaatc tttttatatttaggggaagtc ac c aaagca

Clear

Fig. 2.13. Using monospace font to format sequences

Determining Sequence Type: Nucleotide or Protein?

Now that we have formatted the sequence and calculated its size, lets
plug in functionality into the SwingBlast application that will determine if
the entered sequence is nucleotide (DNA or RNA) or protein. Note that
RNA, like DNA is a polymer composed of four nucleotides. The
difference between RNA and DNA is the nature of the sugar moiety: RNA
has the ribose sugar, while DNA has the deoxyribose sugar. RNA has the
same purine bases as DNA: adenine (A) and guanine (G) and the same
pyrimidine cytosine (C), but instead of thymine (T), it uses the pyrimidine
uracil (U).

Determination of sequence type is done with an algorithm that takes into
account information on the natural composition of nucleotide and protein
sequences. According to the algorithm, if:

1. Total number of nculeotides (that is, sum of A, T, G and C's) divided
by the total length of the sequence is greater that 0.85, it is a DNA
sequence

2. Total number of A, T, G, C and U's divided by the total length of the
sequence is greater that 0.85, it is an RNA sequence

54

If neither of these two conditions is met, the sequence is assumed to be a
protein sequence. Note that we are not using the extended DNA/RNA
alphabet that includes symbols for sequence ambiguity as defined in the
International Union of Pure and Applied Chemistry (lUPAC) and
International Union of Biochemistry (lUB) nucleotide and amino acid
nomenclature. Instead, we are assuming the DNA alphabet to be composed
of the four bases A (adenine), T (thymine), G (guanine), C (cytosine) and
N, the RNA alphabet to be composed of A (adenine), U (uridine), G
(guanine), C (cytosine) and N (where N is any nucleotide base) and the
amino acid alphabet to be composed of A (alanine), C (cysteine), D
(aspartate), E (glutamic acid), F (phenylalanine), G (glycine), H
(histidine), I (isoleucine), K (lysine), L (leucine), M (methionine), N
(asparagine), P (proline), Q (glutamine), R (arginine), S (serine), T
(threonine), V (valine), W (tryptophan) and Y (tyrosine).

Let's see how this algorithm works with an example. Take the partial
mRNA sequence of the human CFTR gene (gi: 90421312) as shown
below:

AAUUGGAAGCAAAUGACAUCACAGCAGGUCAGAGAAAAAGGGUUGAGCGGCAGGCACCCAG
AGUAGUAGGUCUUUGGCAUUAGGAGCUUGAGCCCAGACGGCCCUAGCAGGGACCCCAGCGC
CCGAGAGACCAUGCAGAGGUCGCCUCUGGAAAAGGCCAGCGUUGUCUCCAAACUUUUUUUC
AGCUGGACCAGACCAAUUUUGAGGAAAGGAUACAGACAGCGCCUGGAAUUGUCAGACAUAU
ACCAAAUCCCUUCUGUUGAUUCUGCUGACAAUCUAUCUGAAAAAUUGGAAAGAGAAUGGGA
UAGAGAGCUGGCUUCAAAGAAAAAUCCUAAACUCAUUAAUGCCCUUCGGCGAUGUUUUUUC
UGGAGAUUUAUGUUCUAUGGAAUCUUUUUAUAUUUAGGGGAAGUCACCAAAGCAGUACAGC
CUCUCUUACUGGGAAGAAUCAUAGCUUCCUAUGACCCGGAUAACAAGGAGGAACGCUCUAU
CGCGAUUUAUCUAGGCAUAGGCUUAUGCCUUCUCOUUAUUGUGAGGACACUGCUCCUACAC
CCAGCCAUUUUUGGCCUUCAUCACAUUGGAAUGCAGAUGAGAAUAGCUAUGUUUAGUUUGA
UUUAUAAGAAGACUUUAAAGCUGUCAAGCCGUGUUCUAGAUAAAAUAAGUAUUGGACAACU
UGUUAGUCUCCUUUCCAACAACCUGAACAAAUUUGAUGAAGGACUUGCAUUGGCACAUUUC
GUGUGGAUCGCUCCUUUGCAAGUGGCACUCCUCAUGGGGCUAAUCUGGGAGUUGUUACAGG
CGUCUGCCUUCUGUGGACUUGGUUUCCUGAUAGUCCUUGCCCUUUUU

We will call this sequence with a size of 840 bases "SI". Lets start by
removing all A, T, G and C's from the sequence. The length of the
sequence without A, T, G and C's is 237; lets call this sequence S2.

Number of A, T, G and C's in the sequence = SI - S2 = 603. Next we
remove all the U's from the sequence that remain after removing the A, T,
G and C's (that is, the sequence S2). The length of the sequence after
removing all the U's is zero (since all we had left were U's). Lets call this
S3. The total number of U's in the sequence is therefore S2 - S3 is 237.

Introduction to Basic Local Alignment Search Tool 55

Now let's calculate the relative proportions of DNA and RNA alphabets in
the sequence.

(A + T + G + C)/Total = 603/840 = 0.72

According to the algorithm, since this is less than 0.85, it cannot be a
DNA sequence.

(A + T + G + C + U)/Total = (603 + 237)/840 = 1

Since this is > 0.85, this is an RNA sequence. We can now write the
code using the above reasoning. Since we will use regular expression
matching to parse the sequence, we will first import the appropriate
libraries to do so:

import org.apache.regexp.RE;

import org.apache.regexp.RESyntaxException;

We declare the magic 0.85 number as a threshold:

private static final double SEQ_THRESHOLD = 0.85;

The getsequenceType() method that implements the algorithm is as

follows:

public static int getSequenceType(String sequence) throws
RESyntaxException {

RE re = new RE("[actgnACGTN]+");
String[] strings = re.split(sequence);
int numbOfLettersOtherThanATGCNs = 0;

for (int i = 0; i < strings.length; i++) {
numbOfLettersOtherThanATGCNs +=

strings[i].length();
}
int length = sequence.length();
int numbOfACGTNs = length

numbOfLettersOtherThanATGCNs;

re = new RE("[uU] +") ;
strings = re.split(sequence);
int numbOfLettersOtherThanUs = 0;

for (int i = 0; i < strings.length; i++) {
numbOfLettersOtherThanUs += strings[i].length();

}

56

int numbOfUs = sequence.length()
numbOfLettersOtherThanUs;

if (numbOfACGTNs / (double) length > SEQ_THRESHOLD) {
return TYPE_DNA;

} else if ((numbOfACGTNs + numbOfUs) / (double)
length > SEQ_THRESHOLD) {

return TYPE_RNA;
} else {
return TYPE_PROTEIN;

}
}

With this code in place, we get the following results for the partial
sequences of the human CFTR nucleotide (Fig. 2.14 and Fig. 2.15) and
protein (Fig. 2.16 and Fig. 2.17).

SecjUGiice Form Help

WTTGGAftGCaAATGACATCACAGCAGGTCAeAGAAAMOGGTTGAGCGGCAGG'
CACCCAGAGTAGTAGG
TCTTTGGCATTAeeAGCTTGAGCCCAGACeGCCCTAeCAGeeACCCCAeceC
C C GAGA6ACCATG CAGAG
GTC GC CTCTG GAAAAG G C CAGC GTTGTCTC CAAAC I I I I I I ! GAG CTG GAC CA
GAC CAATTTT6AGGAAA
G G ATACAG ACAG CG C CTG 6AATTGTC AGACATATAC CAMTC CCTTCTGTTGAT

CTG AaAAATTGGAMGAGAATe G GATAGAGAGCTG G CTTCAWGAAAfiATC CTAAi
CTCATTA^TGCCCT
TCGGC6ATGI I I I ! I CTGGAGATTTATGTTCTATGGAATCTTTTTATATTTAGG6G
AAGTCACCAAAGCA
GTACAG CCTCTCTTACTG G GAAGAATC ATAG CTTC CTATGAC C CG GATAAC.SAG
GAGG.AACGCTCTATCG

Clear

Fig. 2.14. Determining sequence type - CFTR nucleotide sequence

Introduction to Basic Local Alignment Search Tool 57

Sequence Form Help

Sequence

sSequence1jDNA|420bp
AATTGGAAGCM*.TGACATCACAGCAeGTCAGAGAflAMeGGTTGAGCGGCAGGC/^
C C CAG AGTAGTAG GTCTTTG G C ATTAG GAG CTTG AG C C CAG AC G G C C CTAOCAG
GGACCCCAGCGCCCGAGAGACCATGCAGAGGTCGCCTCTGGAAAAGGCCAGCG
TTGTCTCCAMCI I I I I I I CAGCTGGACCAGACCAATTTTGAGGAAAGGATACAGAC
AG C GC CTGGAATTGTC AGACATATAC C AAATC C CTTCTGTTGATTCTGCTGACAAT
CTATCTGAAAAATTG GAMGAG AATG G G ATAGAGAG CTG G CTTC.AAA,GAAAAATC CT
AMCTCATTAATGC CCTTCGG CGATG I I I I I I CTGGAGATTTATGTTCTATGGAATC
TTTTTATATTTAG G G GAAGTCAC C AAAG C A

Clear

Fig. 2.15. Determining sequence type - CFTR nucleotide sequence

Sequence Form Help

Sequence

MQRSPLEKASWSKLFFSWTRPILRKGYRQRLELSDIYQIPSVDSADNLSEKLER '
EWDRELASKkNPKLI
NALRRCFFWRFMFYGIFLYLQEVTKAVQPLLLGRIIASYDPDNKEERSIAIYLGIGLC
LLFIVRTLLLHP
AJFGLHHIGMQMRIAMFSLIYKKTLKLSSRVLDKISIGQLVSLLSNNLNKFDEGLALfi
HFWVIAPLQVAL
LMGLIWELLQASAFCGLGFLiVLALFQAGLGRMMMKVRDQRAGKISERLVITSEMIE
NIQSVKAYCWEEA
MEKMIENLRQTELKLTRKMWRYFNSSAFFFSGFFWFLSVLPYALIK6IILRKIFTT
ISFCIVLRMAV
TRQFPWAVQTWYDSLGAINKIQDFLQKQEYKTLEYNLTTTEWMENVTAFWEEGF
GELFEKAKQNNNNRK
TSNGDDSLFFSNFSLLGTPVLKDIiMFKIERGQLLAVAGSTGAGKTSLLMMIMGELE
PSEGKIKHSGRISF

Clear

Fig. 2.16. Determining sequence type - CFTR protein sequence

58

Sequence Form Help

Sequence

>3eqijenc:e1|Protein|l430 aa
MQRSPLEKASWSKLFFSVJTRPILRKGYRQRLELSDIYQIP3VDSADNLSEKLER
EWDREUSKKNPKLiNALRRCFFWRFMFYGIFLYLGEVTKA.VQPLLLGRIIASYDP
DNKEERSIAIYLeiGLCLLFIVRTLLLHPAIFGLHHieMQMRIAMFSLIYKKTLKLSSR
VLDKISieQLVSLLSNNLNKFDEGU\Lfl.HFWVIAPLQVALLMGLIWELLQASAFCGL
GFLIVWLFQAGLGRMMMKYRDQRAGKISERLVITSEMIENIQSVKAYCWEEAMEK
MIENLRQTELKLTRKAft.YVRYFNSSAFFFSGFFWFLSVLPYALIKeilLRKIFTTI3F0
IVLR MAVTR QF PWAVQTVJYD S LG Al N Kl Q D F LQ KQ E YKTLEYN LTTTE WM E NVTA
FWEEGFGELFEKS^KQNNNNRKTSNGDDSLFFSNFSLLGTPVLKDINFKIERGQL
LAVAGSTGAGKTSLLMMIMGELEPSEGKIKHSGRISFCSQFSWIMPGTiKENIIFGV
SVDEYRYRSVIKACQLEEDISKFAEKDNIVLGEGGITLSGGQRARISLARAVYKDAC
LYLLDSPFGYLDVLTEKEIFESCVCKLMANKTRILVTSKMEHLKKS.DKILILNEGSS
YFYGTFSELQNLQPDFSSKLMGCDSFDQFSAERRNSILTETLHRFSLEGDAPVS
yAjTETKKQSFKQTGEFGEKRKNSILNPINSIRKFSIVQkTPLQMNGIEEDSDEPLEF'

Clear

Fig. 2.17. Determining sequence type: CFTR protein sequence

We will call this SwingBlast version 1.2. The complete code is

described in Listing 2.5.

Listing 2.5. Determining sequence type

package org . j fb .SwingBlas t ;

import org.apache.regexp.RE;
import org.apache.regexp.RESyntaxException;

import javax.swing.* ;
import j ava.awt.*;
import j ava.awt.event.ActionEvent ;
import j ava.awt.event.ActionListener;
import j ava.awt.event.FocusEvent;
import Java.awt.event.FocusListener;

public class SwingBlastl_2 extends JFrame {

private static final String APP_NAME = "Sequence Form";
private static final String APP_VERSION = "Version 1_2";

private static final Dimension APP_WINDOW_SIZE = new
Dimension(450, 350);

private static final int TYPE_DNA = 0;
private static final int TYPE_RNA = 1;
private static final int TYPE_PROTEIN = 2;

private JComponent newContentPane;

Introduction to Basic Local Alignment Search Tool 59

private JTextArea sequenceArea;
private JScrollPane scrollPaneArea;
private JButton clear;

private JMenuItem aboutltem;
private JMenuItem quitltem;
private static final double SEQ_THRESHOLD = 0.85;

public SwingBlastl_2() {
super();
seqFormInit();

}

private void seqFormlnit() {
setTitle(APP_NAME);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
newContentPane = new JPanel();
newContentPane.setOpaque(true);
newContentPane.setLayout(new BorderLayout());

setContentPane(newContentPane);

// Create the menu bar
JMenuBar menu = new JMenuBar();
JMenu swingBlastMenu = new JMenu(APP_NAME);
quitltem = new JMenuItem("Quit");
swingBlastMenu.add(quitltem);
menu.add(swingBlastMenu);

JMenu helpMenu = new JMenu("Help");
aboutltem = new JMenuItem("About");
helpMenu.add(aboutltem);
menu.add(helpMenu);
setJMenuBar(menu);

// Create the sequence pane
JPanel sequencePanel = new JPanel();
JLabel sequence = new JLabel("Sequence");
sequenceArea = new JTextArea();
Font font = sequence.getFont();
sequenceArea.setFont(new Font("Courier", Font.PLAIN,

font.getSize()));
sequenceArea.setLineWrap(true);
scrollPaneArea = new JScrollPane(sequenceArea);

sequencePanel.setLayout(new BoxLayout(sequencePanel,
BoxLayout.LINE_AXIS));

sequencePanel.add(sequence);
sequencePanel.add(Box.createRigidArea(new Dimension(10,

0)));
sequencePanel.add(scrollPaneArea);

sequencePanel.setBorder(BorderFactory.createEmptyBorder(10,

60

0, 10, 0));

// Lay out the buttons from left to right
JPanel buttonPane = new JPanel();
clear = new JButton("Clear");

buttonPane.setLayout(new BoxLayout(buttonPane,
BoxLayout.LINE_AXIS));

buttonPane.add(Box.createHorizontalGlue());
buttonPane.add(Box.createRigidArea(new Dimension(10,

0))) ;
buttonPane.add(clear);

JPanel jPanel = new JPanel();
jPanel.setLayout(new BorderLayout());
jPanel.setBorder(BorderFactory.createEmptyBorder(0, 10,

10, 10));
jPanel.add(sequencePanel, BorderLayout.CENTER);
jPanel.add(buttonPane, BorderLayout.SOUTH);

newContentPane.add(jPanel, BorderLayout.CENTER);
newContentPane.setPreferredsize(APP_WIND0W_SIZE);

// Display the window
pack();
Dimension screenSize =

Toolkit.getDefaultToolkit().getScreenSize();
setLocation((screenSize.width - APP_WINDOW_SIZE.width)

/ 2,
(screenSize.height - APP_WINDOW_SIZE.height) / 2) ;

setVisible(true);

addListeners();

}

private void addListeners() {
quitltem.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

System.exit(O);

}
});

aboutltem.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

JOptionPane.showMessageDialog(SwingBlastl_2.this,
APP_NAME + " " + APP_VERSION,

"About " + APP_NAME,

JOptionPane.INFORMATION_MESSAGE);

}
});

clear.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

Introduction to Basic Local Alignment Search Tool 61

sequenceArea.setText("");
}

});

sequenceArea.addFocusListener(new FocusListener() {
public void focusGained(FocusEvent e) {

}

public void focusLost(FocusEvent e) {
// Check if the sequence is DNA, RNA or protein

String text = sequenceArea.getText();

// Format the sequence in FASTA format and retrieve the
// sequence the user entered

int idx = text.indexOf(">");
boolean fastaFormatted = idx != -1;
String seqText = null;
String header = null;
int seqLength = 0;
String sequence = "";

if (fastaFormatted) {
int returnldx = text.indexOf("\n");
header = text.substring(0, returnldx);
sequence = text.substring(returnldx + 1,

text.length()).replaceAll("\\s", "").toLowerCase();
seqText = text;

} else {
text = text.replaceAll("\\s", " ") ;
sequence = text.toLowerCase();
header = ">Sequencel|";

seqLength = text.length();
}

// Determine the sequence type
int typeOfSequence = -1;
try {
typeOfSequence = getSequenceType(sequence);

} catch (RESyntaxException el) {
el.printStackTrace();

}

String type = null;
String unitOfLength = null;

switch (typeOfSequence) {
case TyPE_DNA:
type = "DNA";
unitOfLength = " bp";
break;

case TYPE RNA:

62

type = "RNA";
unitOfLength = " bp";
break;

case TYPE_PROTEIN:
type = "Protein";
unitOfLength = " aa";
break;

default:
type = "N/A";
unitOfLength = " N/A";

}

if (!fastaFormatted) {
seqText = header + type + " | " + seqLength +

unitOfLength + "\n" + sequence.toUpperCase();
}

// Display the results in sequence text area
sequenceArea.setText(seqText);

}
});

}

public static int getSequenceType(String sequence) throws
RESyntaxException {

RE re = new RE("[actgnACGTN] + ") ;
String[] strings = re.split(sequence);
int numbOfLettersOtherThanATGCNs = 0;

for (int i = 0; i < strings.length; i++) {
numbOfLettersOtherThanATGCNs +=

strings[i].length();
}
int length = sequence.length();
int numbOfACGTNs = length

numbOfLettersOtherThanATGCNs;

re = new RE("[uU] +") ;
strings = re.split(sequence);
int numbOfLettersOtherThanUs = 0;

for (int i = 0; i < strings.length; i++) {
numbOfLettersOtherThanUs += strings[i].length();

}
int numbOfUs = sequence.length()

numbOfLettersOtherThanUs;

if (numbOfACGTNs / (double) length > SEQ_THRESHOLD) {
return TYPE_DNA;

} else if ((numbOfACGTNs + numbOfUs) / (double)
length > SEQ_THRESHOLD) {

return TYPE_RNA;
} else {

Introduction to Basic Local Alignment Search Tool 63

return TYPE_PROTEIN;
}

}

public static void main(String[] args) {
SwingUtilities.invokeLater(new Runnable() {
public void run() {

final SwingBlastl_2 view = new SwingBlastl_2();
}

});
}

}

Note how we have handled the creation of the GUI elements in
SwingBlast version 1.2 (Listing 2.5):

public SwingBlastl_2() {
super();
seqFormInit();

}

We first created a method called seqForminit() containing all the code
to layout the components and then called the method in the code shown
above. Earlier, for SwingBlast Version 1.1, we had instead bundled all the
code within the main class (Listing 2.1):

public SwingBlastl_l() {

setTitle(APP_NAME + " " + APP_VERSION);

setDefaultCloseOperation(JFrame.EXIT_0N_CL0SE);

}

Using a separate method to build the GUI makes the code easier to read
by separating the widget part from the implementation aspect.

Displaying Valid BLAST Options

The next step, now that we have accurately determined the type of
sequence the user has entered in the text area, is determine which BLAST
options to display for the particular type of input sequence. The purpose of
this is to enable the application to automatically present only the valid
BLAST algorithms appropriate for the input sequence provided by the

64

user. Currently, if a user selects Nucleotide-nucleotide BLAST (BLASTN)
on the NCBI BLAST server and supplies a protein sequence or a GenBank
Id corresponding to a protein sequence, an error message pointing the
mismatch is displayed; however, the BLAST server does not automatically
present the valid options based on user input. Recall from Table 2.1 that the
valid BLAST options for nucleotide sequences are BLASTN, BLASTX
and TBLASTX and the valid options for amino acid sequences are
BLASTP and TBLASTN.

We will begin by adding the needed GUI elements to the SwingBlast
application. The GUI elements we will need are five checkboxes for the
five BLAST algorithms (BLASTN, BLASTP, BLASTX, TBLASTN and
TBLASTX), a drop-down menu to select the databases to search the input
sequence against and the E-value to specify the stringency of search. The
application at this stage should appear as shown in Fig. 2.18. We will
program these GUI elements to be inactivated upon launch of the
application since no sequence is available for analysis. We will call this
version 1.3 of the SwingBlast application.

Svjill()RirlSI liHlri

SHiiiiHrii;f

P I I Mil .nil

D'll>ii)rlSH

l..-V<lilll'

Clear

Fig. 2.18. Adding BLAST options to SwingBlast

Introduction to Basic Local Alignment Search Tool 65

The code to add the BLAST programs as check boxes is as follows. We
first create the required array variables: BLAST_PROGRAMS_DNA,

BLAST_PROGRAMS_PROTEIN, DATABASES and EVALUES tO hold the
appropriate allowed values for each of the parameters. Note that we are
illustrating this application with a few BLAST parameters. The user can
add more parameters as per individual requirements.

private static final String[] BLAST_PROGRAMS_DNA = new
String[]{"BlastN", "BlastX", "TBlastX"};

private static final String[] BLAST_PROGRAMS_PROTEIN =
new String[]{"BlastP", "TBlastN"};

private static final String[] DATABASES = new
String [] { "nr" , "est_huinan" } ;

private static final String[] EVALUES = new
String[]{"0.001", "0.01", "0.1", "1", "10", "100"};

We then create the necessary widgets: check boxes for the DNA and

protein BLAST options and combo boxes for the database and E-values.

private JCheckBox[] cbDna;
private JCheckBox[] cbProtein;
private JComboBox comboDbs;
private JComboBox comboEvalues;

We create a method called createProgramPanel () that draws the
BLAST program panel, the database panel and the E-value panel (Listing
2.6).

Listing 2.6. Laying out the BLAST widgets

private JPanel createProgramPanel() {
// Create the program panel
JPanel programPanel = new JPanel{);
JLabel program = new JLabel("Program");
program.setPreferredSize(LABEL_PREFERRED_SIZE);
CbDna = new JCheckBox[BLAST_PROGRAMS_DNA.length];
String blastProgram;
for (int i = 0; i < BLAST_PROGRAMS_DNA.length; i++) {
blastProgram = BLAST_PROGRAMS_DNA[i];
cbDna[i] = new JCheckBox(blastProgram);
cbDna[i].setMaximumSize(COMBO_PREFERRED_SIZE);

}
cbProtein = new

JCheckBox[BLAST_PROGRAMS_PROTEIN.length];
for (int i = 0; i < BLAST_PROGRAMS_PROTEIN.length; i++)

{
blastProgram = BLAST_PROGRAMS_PROTEIN[i];

66

cbProtein[i] = new JCheckBox(blastPrograin);
cbProtein[i].setMaximumSize(COMBO_PREFERRED_SIZE);

}

programPanel.setLayout(new BoxLayout(programPanel,
BoxLayout.LINE_AXIS));

programPanel.add(program);
programPanel.add(Box.createRigidArea(new Dimension(10,

0)));

0)));

for (int i = 0; i < cbDna.length; i++) {
programPanel.add(cbDna[i]);
programPanel.add(Box.createRigidArea(new Dimension(5,

}
for (int i = 0; i < cbProtein.length; i++) {
programPanel.add(cbProtein[i]);
if (i + 1 < cbProtein.length)
programPanel.add(Box.createRigidArea(new

Dimension(5, 0)));
}
programPanel.add(Box.createHorizontalGlue());
JPanel paramPanel = new JPanel();
paramPanel.setLayout(new BoxLayout(paramPanel,

BoxLayout.PAGE_AXIS));

paramPanel.add(programPanel);
paramPanel.add(Box.createRigidArea(new Dimension(0,

5)));

// Create the database panel
JPanel databasePanel = new JPanel();
JLabel database = new JLabel("Database");
database.setPreferredSize(LABEL_PREFERRED_SIZE);
comboDbs = new JComboBox(DATABASES);
comboDbs.setMaximumSize(COMBO_PREFERRED_SIZE);

databasePanel.setLayout(new BoxLayout(databasePanel,
BoxLayout.LINE_AXIS));

databasePanel.add(database);
databasePanel.add(Box.createRigidArea(new Dimension(10,

0))),

5))):

databasePanel.add(comboDbs);
databasePanel.add(Box.createHorizontalGlue());
paramPanel.add(databasePanel);
paramPanel.add(Box.createRigidArea(new Dimension(0,

// Create the E-Value panel
JPanel evaluePanel = new JPanel();
JLabel eValue = new JLabel("E-value");
eValue.setPreferredSize(LABEL_PREFERRED_SIZE);
comboEvalues = new JComboBox(EVALUES);
comboEvalues.setMaximumSize(COMBO_PREFERRED_SIZE);

Introduction to Basic Local Alignment Search Tool 67

evaluePanel .setLayout(new BoxLayout(evaluePanel,
BoxLayout.LINE_AXIS));

evaluePanel .add(eValue) ;
evaluePanel .add(Box.createRigidArea(new Dimension(10,

0))) ;

5))) ;

evaluePanel.add(comboEvalues);
evaluePanel.add(Box.createHorizontalGlue());
paramPanel.add(evaluePanel);
paramPanel.add(Box.createRigidArea(new Dimension(0,

enableFunctions(TYPE_UNKNOWN);

return paramPanel;

}

The enableFunctions () method takes an i n t parameter
(typeof Sequence) and is responsible for setting the check boxes for the
BLAST programs to enable or disable them based on the type of sequence
entered by the user. We will use the setEnabled () function to enable (or
disable) a button. The setEnabled() method takes a parameter of type
Boolean which can be set to t r u e to enable the button and f a l se to disable
the button.

In case of a nucleotide sequence, we want the three check boxes for
BLASTN, BLASTX and TBLASTX to be available. Simultaneously, we
want the database and the E-value combo boxes to become enabled as
soon as the user enters a sequence. This logic is implemented in the
following manner:

private void enableFunctions(int typeOfSequence) {
if (typeOfSequence == TYPE_DNA | | typeOfSequence ==

TYPE_RNA) {
setChb(chbDna, true);
setChb(chbProtein, false);
setCob(cobDbs, true);
setCob(cobEvalues, true);

} else if (typeOfSequence == TYPE_PROTEIN) {
setChb(chbProtein, true);
setChb(chbDna, false);
setCob(cobDbs, true);
setCob(cobEvalues, true);

} else {
setChb(chbProtein, false);
setChb(chbDna, false);
setCob(cobDbs, false);
setCob(cobEvalues, false);

}
}

68

In the code shown above, we define the se tchb() and setCob()
methods to change the settings of the check boxes (chbProtein for protein
searches, chbDNA for nucleotide searches) and the combo boxes (cobDbs
for database type and cobEvalues for E-values) respectively. These
methods take the object type as the first parameter (check or combo box
whose state needs to be set) and a Boolean parameter (true/false) as
illustrated below:

p r i v a t e s t a t i c void setChb(JCheckBox[] boxes, boolean
value) {

for (i n t i = 0; i < boxes . l eng th ; i++) {
b o x e s [i] . s e t E n a b l e d (v a l u e) ;
b o x e s [i] . s e t S e l e c t e d (f a l s e) ;

}
}

In the above method, we iterate over the check boxes, set them to
enabled or disabled and ensure that they are not selected by default. For
example, when the following method is called:

setChb(cbDna, true);

the method changes only the DNA check boxes to true (enables them)
since we have set cbDNA to hold the array of check boxes for only the two
nucleotide related BLAST programs in the code:

p r i v a t e s t a t i c f i n a l S t r i n g [] BLAST_PROGRAMS_DNA = new
S t r ing[]{"Blas tN" , "BlastX", "TBlastX"};

cbDna = new JCheckBox[BLAST_PROGRAMS_DNA.length];

Similarly, the setcob () function sets the values for the combo boxes for
the database and the E-values:

private static void setCob(JComboBox component, boolean
value) {

component.setEnabled(value);
component.setSelectedlndex(0);

}

Conversely, for a protein sequence, we want the BLASTP and
TBLASTN check boxes and the database and the E-value combo boxes to
become enabled and the check boxes for BLASTN, BLASTX and
TBLASTX disabled. The method with this logic included is as follows:

Introduction to Basic Local Alignment Search Tool 69

private void enableFunctions(int typeOfSequence) {
if (typeOfSequence == TyPE_DNA | | typeOfSequence ==

TYPE_RNA) {
setChb(cbDna, true);
setChb(cbProtein, false);
setCob(comboDbs, true);
setCob(comboEvalues, true);

} else if (typeOfSequence == TYPE_PROTEIN) {
setChb(cbProtein, true);
setChb(cbDna, false);
setCob(comboDbs, true);
setCob(comboEvalues, true);

} else {
setChb(cbProtein, false);
setChb(cbDna, false);
setCob(comboDbs, false);
setCob(comboEvalues, false);

}
}

We will also add a Help menu item. The code to add that is fairly

simple:

JMenu helpMenu = new JMenu("Help");
aboutltem = new JMenuItem("About");
helpMenu.add(aboutItem);
menu.add(helpMenu);

The Help -^ About simply describes the current SwingBlast version

(Fig. 2.19). The complete code for the application is described in Listing
2.7.

70

SwJrii)RI/is< HKI|I

About

Setjuence
SwJngBlast Version 1.3

OK

Pioijinrri

Database

E-value

Clear

Fig. 2.19. Help About Menu information

Listing 2.7. SwingBlast version 1.3

package o r g . j f b . S w i n g B l a s t ;

import org.apache.regexp.RE;
import org.apache.regexp.RESyntaxException;

import javax.swing.*;
import j ava.awt.*;
import j ava.awt.event.ActionEvent;
import Java.awt.event.ActionListener;
import j ava.awt.event.FocusEvent;
import Java.awt.event.FocusListener;

public class SwingBlastl_3 extends JFrame {
private static final String APP_NAME = "SwingBlast";
private static final String APP_VERSION = "Version 1.3";

private static final Dimension LABEL_PREFERRED_SIZE = ne^
Dimension!57, 16);

Introduction to Basic Local Alignment Search Tool 71

private static final Dimension COMBO_PREFERRED_SIZE = new
Dimension(60, 25);

private static final Dimension CP_PREF_SIZE = new
Dimension(450, 350);

private static final int TYPE_DNA = 0;
private static final int TyPE_RNA = 1;
private static final int TYPE_PROTEIN = 2;

private static final String[] BLAST_PROGRAMS_DNA = new
String[]{"BlastN", "BlastX", "TBlastX"};

private static final String[] BLAST_PROGRAMS_PROTEIN =
new String[]{"BlastP", "TBlastN"};

private static final String[] DATABASES = new
String[]{"nr", "est_human"};

private static final String[] EVALUES = new
String[]{"0.001", "0.01", "0.1", "1", "10", "100"};

private JComponent newContentPane;
private JTextArea sequenceArea;
private JScrollPane scrollPaneArea;

private JCheckBox[] chbDna;
private JCheckBox[] chbProtein;
private JComboBox cobDbs;
private JComboBox cobEvalues;

private JButton clear;

private JMenuItem aboutltem;
private JMenuItem quitltem;
private static final double SEQ_THRESHOLD = 0.85;
private static final int TYPE_UNKNOWN = -1;

public SwingBlastl_3() {
super();
seqFormInit();

}

private void seqFormlnit() {
setTitle(APP_NAME + " " + APP_VERSION);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
newContentPane = new JPanel();
newContentPane.setOpaque(true);
newContentPane.setLayout(new BorderLayout());

setContentPane(newContentPane);

// Create the menu bar
JMenuBar menu = new JMenuBar();
JMenu swingBlastMenu = new JMenu(APP_NAME);
quitltem = new JMenuItem("Quit");
swingBlastMenu.add(quitltem);

72

200));

menu.add(swingBlastMenu);

JMenu helpMenu = new JMenu("Help");
aboutltem = new JMenuItein("About") ;
helpMenu.add(aboutltem);
menu.add(helpMenu);
setJMenuBar(menu);

// Create the sequence pane
JPanel sequencePanel = new JPanel();
JLabel sequence = new JLabel("Sequence");
sequenceArea = new JTextArea();
sequenceArea.setLineWrap(true);
scrollPaneArea = new JScrollPane(sequenceArea);
scrollPaneArea.setPreferredSize(new Dimension(3 00,

sequencePanel.setLayout(new BoxLayout(sequencePanel,
BoxLayout.LINE_AXIS));

sequencePanel.add(sequence);
sequencePanel.add(Box.createRigidArea(new Dimension(10,

0))) ;
sequencePanel.add(scrollPaneArea);

sequencePanel.setBorder(BorderFactory.createEmptyBorder(10,
0, 10, 0));

// Lay out the buttons from left to right
JPanel buttonPane = new JPanel();
clear = new JButton("Clear");

buttonPane.setLayout(new BoxLayout(buttonPane,
BoxLayout.LINE_AXIS));

buttonPane.add{Box.createHorizontalGlue());
buttonPane.add(Box.createRigidArea(new Dimension(10,

0)));
buttonPane.add(clear) ;

JPanel jPanel = new JPanel();
jPanel.setLayout(new BorderLayout());
jPanel.setBorder(BorderFactory.createEmptyBorder(0, 10,

10, 10));
jPanel.add(sequencePanel, BorderLayout.NORTH);
jPanel.add(createProgramPanel(), BorderLayout.CENTER);
jPanel.add(buttonPane, BorderLayout.SOUTH);

newContentPane.add(jPanel, BorderLayout.CENTER);
newContentPane.setPreferredSize(CP_PREF_SIZE);

// Display the window
pack() ;
Dimension screenSize =

Toolkit.getDefaultToolkit().getScreenSize();

2 ,

}

Introduction to Basic Local Alignment Search Tool 73

setLocation((screenSize.width - CP_PREF_SIZE.width) /

(screenSize.height - CP_PREF_SIZE.height) 12);
setVisible(true);
addListeners();

private JPanel createPrograinPanel() {
// Create the program panel
JPanel programPanel = new JPanel();
JLabel program = new JLabel("Program");
program.setPreferredSize(LABEL_PREFERRED_SIZE);
chbDna = new JCheckBox[BLAST_PROGRAMS_DNA.length];
String blastProgram;
for (int i = 0; i < BLAST_PROGRAMS_DNA.length; i++) {
blastProgram = BLAST_PROGRAMS_DNA[i];
chbDna[i] = new JCheckBox(blastProgram);
chbDna[i].setMaximumSize(COMBO_PREFERRED_SIZE);

}
chbProtein = new

JCheckBox[BLAST_PROGRAMS_PROTEIN.length];
for (int i = 0; i < BLAST_PROGRAMS_PROTEIN.length; i++)

{
blastProgram = BLAST_PROGRAMS_PROTEIN[i];
chbProtein[i] = new JCheckBox(blastProgram);
chbProtein[i].setMaximumSize(COMBO_PREFERRED_SIZE);

}

programPanel.setLayout(new BoxLayout(programPanel,
BoxLayout.LINE_AXIS));

programPanel.add(program);
programPanel.add(Box.createRigidArea(new Dimension(10,

0))) ;

0))) ;

for (int i = 0; i < chbDna.length; i++) {
programPanel.add(chbDna[i]);
programPanel.add(Box.createRigidArea(new Dimension(5,

}
for (int i = 0; i < chbProtein.length; i++) {
programPanel.add(chbProtein[i]);
if (i + 1 < chbProtein.length)
programPanel.add(Box.createRigidArea(new

Dimension(5, 0)));
}
programPanel.add(Box.createHorizontalGlue());
JPanel paramPanel = new JPanel();
paramPanel.setLayout(new BoxLayout(paramPanel,

BoxLayout.PAGE_AXIS));

paramPanel.add(programPanel);
paramPanel.add(Box.createRigidArea(new Dimension(0,

5)));

74

// Create the database panel
JPanel databasePanel = new JPanel();
JLabel database = new JLabel("Database");
database.setPreferredSize(LABEL_PREFERRED_SIZE);
cobDbs = new JComboBox(DATABASES);
cobDbs.setMaximumSize(COMBO_PREFERRED_SIZE);

databasePanel.setLayout(new BoxLayout(databasePanel,
BoxLayout.LINE_AXIS));

databasePanel.add(database);
databasePanel.add(Box.createRigidArea(new Dimension(10,

0)));

5)):

databasePanel.add(cobDbs);
databasePanel.add(Box.createHorizontalGlue()) ;
paramPanel.add(databasePanel);
paramPanel.add(Box.createRigidArea(new Dimension(0,

// Create the E-Value panel
JPanel evaluePanel = new JPanel();
JLabel eValue = new JLabel("E-value");
eValue.setPreferredSize(LABEL_PREFERRED_SIZE);
cobEvalues = new JComboBox(EVALUES);
cobEvalues.setMaximumSize(COMBO_PREFERRED_SIZE);

evaluePanel.setLayout(new BoxLayout(evaluePanel,
BoxLayout.LINE_AXIS));

evaluePanel.add(eValue) ;
evaluePanel.add(Box.createRigidArea(new Dimension(10,

0))) ;

5)))i

evaluePanel.add(cobEvalues);
evaluePanel.add(Box.createHorizontalGlue());
paramPanel.add(evaluePanel);
paramPanel.add(Box.createRigidArea(new Dimension(0,

// Set it up disabled
enableFunctions(TYPE_UNKNOWN);
return paramPanel;

>

private void addListeners() {
quitItem.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

System.exit(0);

}
});

aboutltem.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

JOptionPane.showMessageDialog(SwingBlastl_3.this,
APP_NAME + " " + APP_VERSION,

"About " + APP_NAME,

Introduction to Basic Local Alignment Search Tool 75

JOptionPane.INFORMATION_MESSAGE);
}

});

clear.addActionListener(new ActionListener() {
public void actionPerforined(ActionEvent e) {

sequenceArea.setText("");
enableFunctions(-1);

}
});

sequenceArea.addFocusListener(new FocusListener() {
public void focusGained(FocusEvent e) {
}

public void focusLost(FocusEvent e) {
// Check if sequence is DNA, RNA or protein
String text = sequenceArea.getText();

// Format sequence in FASTA format and retrieve the
// entered sequence

int idx = text.indexOf(">");
boolean fastaFormatted = idx != -1;
String seqText = null;
String header = null;
int seqLength = 0;
String sequence = "";

if (fastaFormatted) {
int returnldx = text.indexOf("\n");

if (returnldx != -1) {
header = text.substring(0, returnldx);
sequence = text.substring(returnldx + 1,

text.length()).replaceAll("\\s", "").toLowerCase();
seqText = text;

}
} else {
text = text.replaceAll("\\s", " ") ;
RE re = null;
try {

re = new RE("[0-9]+");
} catch (RESyntaxException el) {
el.printStackTrace() ;

}

boolean isGenBankID = re.match(text);

if (isGenBankID) {
GenbankSequenceDB genbankSequenceDB = new

GenbankSequenceDB() ;
header = "GI:" + text;
Sequence seqObject = null;

76

try {
seqObject =

genbankSequenceDB.getSequence(text);
SeqIOTools.writeGenbank(System.out,

seqObject);
} catch (Exception el) {
el.printStackTrace();

}
sequence = seqObject.seqString();

} else {
sequence = text.toLowerCase();
header = ">Sequencel|";
seqLength = text.length();

}
}

// Check if sequence has been entered
if (sequence.length() == 0)
return;

// Determine sequence type
int typeOfSequence = TYPE_UNKNOWN;
try {

typeOfSequence = getSequenceType(sequence);
} catch (RESyntaxException el) {
el.printStackTrace();

}

String type = null;
String unitOfLength = null;

switch (typeOfSequence) {
case TYPE_DNA:

type = "DNA";
unitOfLength = " bp";
break;

case TYPE_RNA:
type = "RNA";
unitOfLength = " bp";
break;

case TYPE_PROTEIN:
type = "Protein";
unitOfLength = " aa";
break;

default:
type = "N/A";
unitOfLength = " N/A";

}

if (!fastaFormatted) {
seqText = header + type + "|" + seqLength +

unitOfLength + "\n" + sequence.toUpperCase();

Introduction to Basic Local Alignment Search Tool 77

}

// Display results
sequenceArea.setText(seqText);

enableFunctions(typeOfSequence);
}

});
}

private void enableFunctions(int typeOfSequence) {
if (typeOfSequence == TYPE_DNA || typeOfSequence ==

TYPE_RNA) {
setChb(chbDna, true);
setChb(chbProtein, false);
setCob(cobDbs, true);
setCob(cobEvalues, true);

} else if (typeOfSequence == TYPE_PROTEIN) {
setChb(chbProtein, true);
setChb(chbDna, false);
setCob(cobDbs, true);
setCob(cobEvalues, true);

} else {
setChb(chbProtein, false);
setChb(chbDna, false);
setCob(cobDbs, false);
setCob(cobEvalues, false);

}
}

private static void setChb(JCheckBox() boxes, boolean
value) {

for (int i = 0; i < boxes.length; i++) {
boxes[i].setEnabled(value);

}
}

private static void setCob(JComponent component, boolean
value) {

component.setEnabled(value);
}

public static int getSequenceType(String sequence) throws
RESyntaxException {

RE re = new RE("[actgnACGTN]+");
String[] strings = re.split(sequence);
int numbOfLettersOtherThanATGCNs = 0;

for (int i = 0; i < strings.length; i++) {
numbOfLettersOtherThanATGCNs += strings[i].length();

}
int length = sequence.length();
int numbOfACGTNs = length -

78

numbOfLettersOtherThanATGCNs;

re = new RE("[uU]+");
strings = re.split(sequence);
int numbOfLettersOtherThanUs = 0;

for (int i = 0; i < strings.length; i++) {
numbOfLettersOtherThanUs += strings[i].length();

}
int numbOfUs = sequence.length() -

numbOfLettersOtherThanUs;

if (numbOfACGTNs / (double) length > SEQ_THRESHOLD) {
return TyPE_DNA;

} else if ((numbOfACGTNs + numbOfUs) / (double) length
> SEQ_THRESHOLD) {

return TyPE_RNA;
} else {
return TYPE_PROTEIN;

}
}

public static void main(String[] args) {
SwingUtilities.invokeLater(new Runnable() {
public void run() {

final SwingBlastl_3 view = new SwingBlastl_3();
}

}) ;
}

}

Fig. 2.20 and Fig. 2.21 show the behavior of the application for a
nucleotide and a protein sequence respectively that is entered in the text
area. In both cases, the correct set of BLAST programs are selected
(BLASTN, BLASTX and TBLASTX for nucleotide sequence and
BLASTP and TBLASTN for protein sequence). Simultaneously, the drop
down menu boxes for the databases and the E-value are activated for
selection by the user.

Introduction to Basic Local Alignment Search Tool 79

>!—, 3iilf i l l^^BISffl i l p d SlJlril i * J
^ i ^ a a i £3 ysJ ;;....j!

niiiinilffr r - " " -inr -"^

SwingBiast Help

;=Sec!Li6nce1;DNAlS4] bp i*J
^TTGGA^GCAA.flTGACATCAC;«OC:/>GGTCAGAOAflAAAGO:?TT; T1
eAGCGGCAGGCACCCAeAGTAeTAGGTCTTTeGCATTAeGAG '-.i
CTT15 AG 0 C GAG AC GO 0 0 CTAO CAO G G AC C C 0 AG C 0 0 C 0 G AC :.'.!
AGACCATGCAGAGGTCGCCTCTGGAAAAGGCCAGCGTTGTCT • • '
C CA»AC I I ! I 1 1 ! CAG CTG G AC C AG AC CMTTTTG AG G AAAG G A •' •:

Sequence TACAGACAGCGCCTuGAATT3Ti:AGA0ATATACCAAATi:C0TTi;;V
TGTTGATTCTGCTGACAATCTATCTGAAAAATTGOAAAGAGAATGi •
G GATAGAGAG CTGGCTTCAAAGA'Wy\TC CT/ViACTCATTAMTGi: ;
CCiTC:GGCGATeTTrTTTCTeOAGArTTArGTrCTATGGA.«TC:T
TTTTATATTTAGGGGMGTCACCAAAGCAOTACAGCCTCTCTTA
JCTGGGAAGAAJCATAGCTFCCTATGACCC GGATAACAAGGAGG ^ ;

Program ! ! BiastN l..iBlastX iJTBlasIX

Database ! nr
I

E-value | 0.001 •»

•w I

Clear

Fig. 2.20. Displaying BLAST options for a nucleotide sequence

80

SwJnjjBlast Hi:>ip

Sequence

•^DequencellProtelniSJO aa
MQRSPLEKASWSKLFFSVWRPILRKGYRQRLELSDIYQIPSVDS
AD N LS E KLE RE WD R ELAS KKN PKLINALRRCF FWR F M FYGIF LY
LaEWKAVQPLLLGRIIAeYDPDNKEERSIAIYLGIGLCLLFIVRTLL
i HPAIFGLHHIGMQMRIAMFSLIYKKTLKLSSRVLDKISIGQLVSLL
3NNLNKFDEGU5.U^HF'vWIAPLQVALLMGLIWELLQASAFCGLGF
LVLALFQAGLGRMMMKYRDQRAGKISERLVITSEMIENIQSVKAY
GWEEAMEKMIENLRQTELKLTRKAAYVRYFNSSAFFFSGFFWFL
S'^LPYALIKGIILRKIFTTISFCIVLRMAVTRQFPWAVQTWYDSLGAI
rjKIQDFLQKQEYl-CTLEYNLTTTEWMENVTAFWEEGFGELFEKAh
ONNNNRCTSNGDDSLFFBNFSLLGTPVLKDINFKIERGQLUS.VA
G3TGAG KTSLLMMIMGE LEP SEG KlKH SGR13F C 3QF 3WlU P GTI ,

Hfltflhasfi iir

EvdIiJt) 0.001 -^

BlasIP TBIastN

Clear

Fig. 2.21. Displaying BLAST options for a protein sequence

Summary

In this Chapter, we created a Swing based application that allows users
to prepare sequences for BLAST searches by performing simple
formatting tasks such as conversion into the Fasta format and determining
the sequence type and length. Along the way we introduced how to write
code to respond to events taking place in response to user initiated actions.
We created the GUI elements and wrote the code that enables the elements
to respond to the sequence type and present only the valid BLAST options
that are available for the entered sequence type. The rationale for building
these features into the application was to make it more functional and to
simplify its use for the end-users, given the many potentially confusing
parameters a user has to supply when performing a search operation. In the
next Chapter, we will extend the SwingBlast application to actually
perform the BLAST search operation.

Introduction to Basic Local Alignment Search Tool 81

Questions and Exercises

1. Enhance the SwingBlast application interface to accept multiple
sequences, for example, by incorporating the ability to upload a
multiple Fasta file. Next incorporate code to add checkboxes against
each uploaded sequence to allow users to select specific sequences for
further analysis. Develop the use cases that fulfill the above user
requirements.

2. Explore the BLAST algorithms in further detail by visiting the tutorial
site listed below. How do you determine the statistical significance of
BLAST hits? What are bit scores and p-values?

3. Download the sequence for simian sarcoma virus v-sis oncogene gene
from GenBank and perform a BLAST against the nr database. What
BLAST program(s) would you use to find similarities between v-sis
and existing nucleotide and protein sequences? What are the top ten
hits that BLAST returns? Which human and other vertebrate homologs
can you identify?

Additional Resources

• BLAST tutorial -
http://www.ncbi.nlm.nih.gov/BLAST/tutorial/Altschul-l.html

• GenBank - http://www.ncbi.nlm.nih.gov/Genbank/index.html

• Java™ 2 Platform Standard Edition 5.0 API Specification -
http://java.sun.eom/j2se/l.5.0/docs/api/

Selected Reading

Simian sarcoma virus one gene, v-sis, is derived from the gene (or genes)
encoding a platelet-derived growth factor. Doolittle RF, Hunkapiller MW,
Hood LE, Devare SG, Robbins KC, Aaronson SA, Antoniades HN.
Science. 1983 Jul 15;221(4607):275-277.

Identification of the cystic fibrosis gene: cloning and characterization of
complementary DNA. Riordan JR, Rommens JM, Kerem B, Alon N,

82

Rozmahel R, Grzelczak Z, Zielenski J, Lok S, Plavsic N, Chou JL, et al.
Science. 1989 Sep 8;245(4922): 1066-73.

Basic local alignment search tool. Altschul SF, Gish W, Miller W, Myers
EW, Lipman DJ. J Mol Biol. 1990 Oct 5;215(3):403-10.

Gapped BLAST and PSI-BLAST: a new generation of protein database
search programs. Altschul SF, Madden TL, Schaffer AA, Zhang J, Zhang
Z, Miller W, Lipman DJ. Nucleic Acids Res. 1997 Sep 1;25(17):3389-402.

Chapter

Running BLAST using SwingBlast

Introduction

In the last Chapter, we created the basic framework application called
SwingBlast Version 1.3 using Swing libraries to manipulate user defined
nucleotide and protein sequences and prepare them for BLAST searches.
In this Chapter, we will add functionality to the application that enables
users to download sequences automatically from NCBI GenBank, submit
sequences for multiple simultaneous BLAST analyses, and save and view
BLAST results. To begin with, we will demonstrate how to use NCBI's
QBlast package to perform BLAST searches. We will then create an
application called JQBlast to demonstrate how to use theQBlast package to
run BLAST searches.

The NCBI QBLAST Package

NCBI provides a standardized API called URLAPI to formulate and
dispatch direct HTTP-encoded requests to the NCBI QBlast system. The
URLAPI provides a URL and a mechanism to set parameters that allows
users to send sequences for BLAST searches.

NCBI QBlast works through 4 steps:

1. The user provides BLAST parameters through a URL using
the HTTP POST method

84

2. The QBlast service returns a Request Identifier (RID) and a
Request Time of Execution (RTOE, measured in seconds) for
the search, which provide respectively, a unique identifier for
the search operation and an estimate of the time required to
complete the search

3. The user queries the QBlast service with the RID through
HTTP GET method

4. The server sends back the result with a status value that
indicates the progress of the BLAST request

Users of the QBlast service should adhere to the guidelines provided by
NCBI when submitting large batch searches. In general, searches should
be performed in a sequential manner after receiving the RID and RTOE for
each submission. NCBI specifies that each request be submitted after a
pause of no less than 3 seconds to check on the status of the request using
the RID. Failure to do so may overload the server and force NCBI to block
offending users from further use of the service.

Strategy for Creating a QBlast Based System

The design of the NCBI QBlast service as described above stipulates the
need for a client application that performs the following operations:

1. Send search requests made by the user and check the status of
requests periodically

2. Perform the appropriate action based on the nature of the status value
that gets returned

QBlast may return one of three types of status values: "READY"
meaing that the search was completed successfully, "WAITING" meaning
that the search has not been completed and "UNKNOWN" meaning that an
error has been encountered during the BLAST submission and/or search
process. In UML terms, the user and the client application are actors that
interact with the QBlast system. The UML diagram below (Fig. 3.1)
depicts the use cases that encapsulate the basic functionality that is desired
of the system that we wish to create:

Running BLAST using SwingBlast 85

1. User submits query sequence to the QBlast service

2. Application queries status of the BLAST search with a unique RID

3. Applcation returns results approriate to the status value

A
client Application

Fig. 3.1. Use Cases for the QBlast service

In terms of the architecture of the application, we will provide a class
that will wrap the NCBI URLAPI into Java API that can be reused in other
applications. To fulfill these use cases, we will design the QBlast service
to implement 2 methods: submitQuery and querystatus (Fig. 3.2).

QBlast

+su\m rtQ LMi-rfP ornm • t̂H îs: D otcrty i'l-^j: RID R T OE

+i;iLKi"y^itatLisiJ^ ID: D ototyiw j : Obl>^it

Fig. 3.2. Class QBlast

The QBlast class is our interface to the real NCBI URLAPI. From the
application point of view, it is totally transparent and is designed to be so
in order to accommodate and simplify future changes to the API (or, if
there is a need to adopt an entirely different API). This design ensures that
the framework we create remains usable even if the underlying API
requires changes. The submitQuery () method takes the BLAST

86

parameters (specified through the QBlastParameter object) and returns an
object of type Reques t iden t i f i e r . The parameters needed to run the
BLAST search would be obtained from the user through the SwingBlast
GUI we created in Chapter 1. The R e q u e s t i d e n t i f i e r is returned by the
QBlast service in response to the submitted request and contains the RID
and the RTOE for a specific search.

For the que rys t a tus method similarly, we will need 2 objects:
R e q u e s t i d e n t i f i e r and QBlastResult. A UML diagram with these
considerations in mind is shown in Fig. 3.3.

\

QBlast

+5u!'mitCHieryiJiaraiii>4Hr:Blti5iFarirrParami-rtHi):P«qui^3tliJi^nti1iHr

+i:iUH!ryS1atus(rirJ:Ri-,i.|Lii-!StliJi-!ritift-:r):0BLastR«ailt

f
Req uesUdentitier

-rii:J:sliinq

-rto-a int

\ /
QBLastResuK

-status :j1rini;j

-r'^a.ilt;.Siin':i

\ /
B lastF DrnP ara meter

Fig. 3.3. UML class diagram showing the QBlast architecture

Designing the BLAST API

We will design our BLAST API to consist of 3 classes:

• Blast

• BlastManager

• BlastException

Running BLAST using SwingBlast 87

We will define Blast as an abstract class, which means that it
represents an abstract concept, and therefore cannot be instantiated, but
can only be subclassed. An abstract class is declared using the keyword
abstract before the class keyword in the class declaration. In this case, for
example, we would declare the Blast class as shown below:

abstract class blast { ... }

We'll describe this class in detail later in the Chapter. The
BlastManager class provides a mechanism to get an instance of the
abstract class Blast without having to worry about how to create the
instance by calling the static method (that we had earlier explained in
Chapter 2):

Blast blast = BlastManager.createBlast();

The BlastException class provides a mechanism for handling
exceptions thrown by any implementation when a failure or error occurs.
The Requestidentif ier class is a Java class, which provides what are
known as setter, and getter methods that provide information about the
request submitted to the Blast service. What are setter and getter methods?
In a class definition, private fields can be encapsulated so that the data
structure used can be changed at will without compromising the rest of the
code that uses that class. When the data structure is hidden, the way to
provide access to and/or modify the fields is through setter and getter
methods. For example, a class that has a field called resul t will provide a
setter method called setResult and a getter method call getResult. The
Requestidentifier class uses these methods as described above. The
structure of the application designed so far is shown in Fig. 3.4.

SwingBlasG

org

jfb

blast

jqblast

Blast
BlastManager
BlastException

JQBIast
Requestldentifler

Fig. 3.4. Structure of the SwingBlast application

Description of Blast Classes

The Blast class extends the Observable class, which represents an
observable object, an instance of which can be observed for any changes
that occur to the object. When an observable instance changes (that is,
when an object that is being observed changes), the notifyobservers
method is called and causes the observer to be notified of the change by a
call to the observer's update method. In this case, we want to observe the
Blast class for changes that occur during the process of submitting the
request and waiting for the result to be returned. We can then notify the
observers of the progress of the search, as well as when the results are
ready or if an error occurs.

The Blast class contains 2 abstract methods:

submitQuery()

and,

requestResult()

Running BLAST using SwingBlast 89

that respectively take one parameter each: a Java data type called Map
for the BLAST parameters, which stores sets of elements in the form of
key-value pairs, and the identifier for the identifier that is uniquely
associated with each BLAST search. Both methods return an object of the
respective type and throw an exception if an error occurs. The Blas t class
is defined in Listing 3.L

Listing 3.1. The Blast class

package o r g . j f b . b l a s t ;

import java.util.HashMap;
import java.util.Observable;

public abstract class Blast extends Observable {
public abstract Object submitQuery(Map parameters)
throws BlastException;

public abstract Object requestResult(Object identifier)
throws BlastException;
}

The way to initialize the BlastManager is to provide the full class name
of the implementation through a JVM system property called
' b l a s t , d r i v e r ' . An example of how to provide our BLAST
implementation called o r g . j f b . j q b l a s t . J Q B i a s t to the BlastManager
via a JVM system property is shown below:

Java -Dblast.driver=org.jfb.jqblast.JQBiast ...

The class JQBiast must be declared in the Java classpath to be able to
be found by the Java dassloader. The Java classloader is responsible for
loading a Java class when it is needed. The BlastManager class is
described in Listing 3.2.

Listing 3.2. The BlastManager class

package o r g . j f b . b l a s t ;

public class BlastManager {
private static String blastClass = null;
private static boolean initialized = false;

public static void register(Blast blast) {
blastClass = blast.getClass().getName();

}

90

private static void loadlnitialDrivers() {
final String driver =

System.getProperty("blast.driver");
if (driver == null)

return;

try {
System.out.println("BlastManager.Initialize:

loading " + driver);
Class.forName(driver);

} catch (Exception e) {
System.out.printIn("BlastManager.Initialize:

load failed: " + e);
}

}

public static Blast createBlast() throws BlastException
{

i f (U n i t i a l i z e d) {
i n i t i a l i z e d = t r u e ;
l o a d l n i t i a l D r i v e r s () ;

}
if (blastClass == null)

throw new BlastException("There is no driver
configured! "

+ "Please use blast.driver Java
property or Class.forName to load the driver class.");

try {
// In a multi thread environment we need to

make sure // that the class is loaded.
final Class aClass = (Class)

Class.forName(blastClass, true,
Thread.currentThread().getContextClassLoader());

return (Blast) aClass.getConstructor(new
Class[]{}).newlnstance(new Object[]{});

} catch (Exception e) {
throw new BlastException(e);

}
}

}

The purpose of the register() method is to inform the BlastManager
which Blast implementation we want to use. This is done as follows:

public static void register(Blast blast) {

blastClass = blast.getClass().getName();

}

Running BLAST using SwingBlast 91

Here, b l a s t . g e t c i a s s () returns an instance of class
Java . l ang .Class . b l a s t C l a s s is an instance of Java . l ang .Class and
b las tc lass .ge tName() will return the real class name which, in this case
would be o r g . j f b . j q b l a s t . J Q B l a s t .

Let's look at the l o a d l n i t i a l D r i v e r s method below:

private static void loadlnitialDrivers() {
final String driver =

System.getProperty("blast.driver");
if (driver == null)

return;

t r y {
S y S t e m . o u t . p r i n t I n (" B l a s t M a n a g e r . I n i t i a l i z e :

loading " + d r i v e r) ;
Class . forName(dr iver) ;

} catch (Exception e) {
S y s t e m . o u t . p r i n t I n (" B l a s t M a n a g e r . I n i t i a l i z e :

load f a i l e d : " + e) ;
}

}

When the l o a d l n i t i a l D r i v e r s method is called, it gets the property
b l a s t . d r i v e r from the system and if it is not null, calls the
c l a s s , f orName () method. At that point, BlastManager knows that a
Blas t driver is registered and available, otherwise an exception is thrown
with an error message. Finally, the BlastException class handles any
exceptions that arise during the BLAST search (Listing 3.3).

Listing 3.3. The BlastException class

package o r g . j f b . b l a s t ;

public class BlastException extends Exception {
public BlastException() {
}

public BlastException(String message) {
super(message);

}

{
public BlastException(String message, Throwable cause)

super(message, cause);
}

public BlastException(Throwable cause) {

92

super(cause) ;
}

}

Implementing JQBIast

We will now build the JQBlast application that allows users to send
multiple simultaneously BLAST queries using the classes we described
above. To implement the NCBI QBlast package, we just need to extend the
Blast class and provide an implementation of the methods as described
above. We will call the instance of the Blast class jQBlast as shown
below:

public class JQBlast extends Blast {
//implement Blast methods

}

We will create a file called QBlast. java to implement this code. It is up
to the developer of a Blast implementation to provide the code for those
methods. The developer must also register the Blast class to the
BiastManager class using a static statement that will be executed after
loading the class. A static statement is a piece of code that starts with the
Java keyword static and is followed by curly brackets (which, in this case,
holds the code that loads the Blast implementation called
org. jfb. jqbias t . JQBlast). It is executed after the class is loaded in the
JVM:

public class JQBlast extends Blast {
static {

System.out.println("Registering " + JQBlast.class);
BiastManager.register(new JQBlast());
}

//implement Blast methods
}

The Blast engine provides a mechanism to specify the parameters for a
search (such as database type, BLAST algorithm type, E-value, etc.) and to
submit a sequence into a queue for the actual Blast operation. The above
design provides a way of accessing an instance of Blast, without the need
to know the mechanism by which the Blast operation is submitted or
performed. In this case, JQBlast is an implementation of the abstract
Blast class and that is the one that is instantiated by the BiastManager.

Running BLAST using SwingBlast 93

When a Java class is loaded, the Java classloader will run all the static
statements first, so a jQBlast instance will be created and registered to the
BlastManager. Now to allow the classloader to load that class we need to
call the Java classpath using the forName method from the class class, as
shown below:

static {
try {

Class.forName("org.jfb.jqblast.JQBlast");
} catch (ClassNotFoundException e) {

e.printStackTrace();
}

}

Alternately, we can pass the Java class name to the JVM system
property using the Java -D option and the property name "blast .driver",
if we don't want to hard code the name of the Blast class we would like to
use in the code.

Java -Dblast .driver=org. jfb. SwingBlast .qblast .QBlast (...)

The property is then retrieved using the getProperty method as shown
below:

System.getProperty("blast.driver");

We pass the BLAST parameters to the submitQuery() method as
follows:

public Object submitQuery(Map parameters) throws
BlastException {

String urlapiQuery = createUrlapiQuery(parameters);
setChanged();
notifyObservers("Submitting the job to the server

with query\n"
+ urlapiQuery);

String queryResult = sendQuery(urlapiQuery);

if (queryResult == null) return null;
return parseOutReqId(queryResult);

}

The method createUrlapiQuery () within submitQuery () generates
the HTTP-encoded request containing the specified parameters (including
the sequence specified by the user (in this case, a test sequence
"AAGTCGATAGCTCGCGCGCCGGCCGTGAGGAAAAAAAAA").

94

CMD=Put&QUERY_BELIEVE_DEFLINE=yes&QUERY=%3E+Sequencel%7CDNA
%7C3 8+bp%0AAGTCGATAGCTCGCGCGCCGGCCGTGAGGAAAAAAAAA&DATABASE=nr
&PROGRAM=blastn&EXPECT=0.001

The method is described below:

private String createUrlapiQuery(Map parameters) {
StringBuffer query = new

StringBuffer("CMD=Put&QUERY_BELIEVE_DEFLINE=yes");
try {

query.append("&QUERY=").append(URLEncoder.encode((String)
parameters.get("sequenceText"), "UTF-8"))

.append("&DATABASE=").append((String)
parameters.get("database"))

.append("&PROGRAM=").append((String)
parameters.get("blastType"))

.append("&EXPECT=").append((String)
parameters.get("eValue"));

} catch (UnsupportedEncodingException uee) {
uee.printStackTrace();

}
return query.toString();

}

In this case, the method returns a String object containing the sequence
to be submitted for the BLAST search, the database to be searched against,
the BLAST program to be used and the cut-off E-value for the search.

The setchanged() method in submitQuery() is derived from the

Observable class and is used to keep track of changes in the status of an

object, in this case. Blast . The observable class notifies changes in states

of objects by calling the not i fyObservers() method. In this example, we

will inform the user that a search job has been submitted (with the

message, "Submitting the job to the server with query", and appends the

urlapiQuery String to it.

not i fyObservers("Submit t ing the job to the se rver with
query\n" + ur lap iQuery) ;

Next we send the query for BLAST using the sendQuery() method:

private String sendQuery(String httpQuery) throws
BlastException {

DataOutputStream printer = null;
URLConnection urlConnection;
ByteArrayOutputStream outputStream = null;

Running BLAST using SwingBlast 95

try {
urlConnection = new URL(blastUrl).openConnection();
urlConnection.setDoInput(true);
urlConnection.setDoOutput(true);
urlConnection.setUseCaches(false);
urlConnection.setRequestProperty("Content-Type",

"application/x-www-form-urlencoded");
urlConnection.setRequestProperty("Content-Length", ""

+ httpQuery.length());
printer = new

DataOutputStream(urlConnection.getOutputStream());
printer.writeBytes(httpQuery);

// Read the result
BufferedReader reader = null;
reader = new BufferedReader(new

InputStreainReader(urlConnection.getInputStreain()));
outputStream = new ByteArrayOutputStreain();
String str;
while ((str = reader.readLine()) != null) {

outputStreain.write(str .getBytes ()) ;
}

} catch (MalformedURLException mue) {
mue.printStackTrace();
throw new BlastException(blastUrl + " is malformed");

} catch (lOException ioel) {
ioel.printStackTrace();
throw new BlastException("Could not get the

connection or write to it");
} finally {
try {
printer.close() ;
printer = null;

} catch (lOException ignore) {
ignore.printStackTrace();

}
}
return outputStream != null ? outputStream.toString() :

null;
}

The sendQuery() method returns a String carrying the results of the
operation:

string queryResult = sendQuery(urlapiQuery);

We then parse the result (unless no hits were found) using the
parseOutReqid() method:

if (queryResult == null) return null;

96

r e tu rn parseOutReqId(queryResult) ;

The parseOutReqid() method parses the RID and RTOE from the
returned string which is of type:

QBlastlnfoBegin RID = 1097884888-2134-
17842894979.BLASTQ4 RTOE = 30QBlastInfoEnd

and returns the Requestidentif ier:

private Requestidentifier parseOutReqId(String string) {
String rid = null;
String rtoe = null;

try {
RE regex = new

RE("QBlastlnfoBegin(\\s*)RID(\\s*)=\\2(\\S*)(\\s*)RTOE\\2=\\2
(. *)QBlastInfoEnd");

boolean matched = regex.match(string);

if (matched) {
rid = regex.getParen(3);
rtoe = regex.getParen(5);

}
} catch (RESyntaxException ree) {
}
if (rid == null || rtoe == null)
return null;

return new Requestidentifier(rid.
Integer.parselnt(rtoe));

}

Once we obtain the RID and R T O E , we wait for a period of time
specified by the R T O E before trying to access the results.

public Object requestResult(Requestidentifier identifier)
throws BlastException {

if (identifier == null)
throw new BlastException("Cannot get the request

identifier");

setChanged();
notifyObservers("Getting from JQBlast Service the RID

(" + identifier.getRid() + ") and RTOE (" +
identifier.getRtoe() + ").");

// Wait the rtoe time before sending any request back
to the server

try {
long timeOut = identifier.getRtoe() +

Running BLAST using SwingBlast 97

identifier.getTime();

if (timeout > System.currentTimeMillis()) {
int timeLeft = ((int) (timeOut

System.currentTimeMillis())) * 1000;

synchronized (this) {
while (timeLeft > 0) {

wait(waitTime);
setChanged();
notifyObservers("Time left " + ((timeLeft -=

waitTime) / 1000) + "s before requesting the result");
}

}
}

} catch (InterruptedException ie) {
ie.printStackTrace();

}

setChanged();
notifyObservers ("Requesting the result for rid: " -t

identifier.getRid());
StringBuffer query = nev

StringBuffer("CMD=Get&FORMAT_TYPE=XML");
query.append("&RID=" + identifier.getRid());
String ri = query.toString();

String queryResult = null;
String status = null;

boolean hasResult = false;
int ct = 0;
RE regex = null;
try {

regex = nev
RE("QBlastInfoBegin(\\s*)Status=(.*)QBlastInfoEnd");

} catch (RESyntaxException ree) {

}

synchronized (this) {
while (!hasResult) {

status = null;
queryResult = sendQuery(ri);
boolean matched = regex.match(queryResult);

if (matched) {
status = regex.getParen(2);

}
hasResult = !"WAITING".equals(status);
if (hasResult) {
break;

98

}

setChanged();
notifyObservers("Waiting " + NUMBER_OF_SECOND + "

seconds before re-trying (total waiting time: " + (ct +=
NUMBER_OF_SECOND) + "s) . ") ;

try {
wait(NUMBER_OF_SECOND * 1000);

} catch (InterruptedException iel) {
iel.printStackTrace();

}
}

}
if ("UNKNOWN".equals(status)) {

throw new BlastException("Result for RID " +
identifier.getRid() + " failed.");

}
setChanged();
notifyObservers("Getting back the blast result in

XML");
return queryResult;

}

The complete code for JQBlast. java is shown in Listing 3.4.

Listing 3.4. JQBlast.java

package org.jfb.jqblast;

import org.apache.regexp.RE;
import org.apache.regexp.RESyntaxException;
import org.jfb.blast.Blast;
import org.jfb.blast.BlastException;
import org.jfb.blast.BlastManager;

import Java.io.BufferedReader;
import Java.io.ByteArrayOutputStream;
import Java.io.DataOutputStream;
import Java.io.File;
import Java.io.FileOutputStream;
import Java.io.lOException;
import j ava.io.InputStreamReader;
import Java.io.OutputStream;
import Java.io.UnsupportedEncodingException;
import java.net.MalformedURLException;
import Java.net.URL;
import java.net.URLConnection;
import java.net.URLEncoder;
import java.util.HashMap;

public class JQBlast extends Blast {

Running BLAST using SwingBlast 99

static {
System.out.println("Registering " + JQBlast.class);
BlastManager.register(new JQBlast());

}

private static final String blastUrl =
"http://www.ncbi.nlin.nih.gov/blast/Blast.cgi" ;

private static final int NUMBER_OF_SECOND = 3;

public Object submitQuery(Map parameters) throws
BlastException {

String urlapiQuery = createUrlapiQuery(parameters);
setChanged();
notifyObservers("Submitting the job to the server

with querySn" + urlapiQuery);
String queryResult = sendQuery(urlapiQuery);

if (queryResult == null) return null;
return parseOutReqId(queryResult);

}

final static int waitTime = 2000;

public Object requestResult(Object identifier) throws
BlastException {

if (identifier == null || !(identifier instanceof
Requestldentifier))

throw new BlastException("Cannot get the
request identifier " + identifier);

Requestldentifier ridentifier = (Requestldentifier)
identifier;

setChanged();
notifyObservers("Getting from JQBlast Service the

RID (" + rIdentifier.getRid()
+ ") and RTOE (" + ridentifier.getRtoe() +

// Wait the rtoe time before sending any request
back to the server

try {
long timeOut = ridentifier.getRtoe () +

ridentifier.getTime();

if (timeOut > System.currentTimeMillis()) {
int timeLeft = ((int) (timeOut

System.currentTimeMillis())) * 1000;

synchronized (this) {
while (timeLeft > 0) {

wait(waitTime);
setChanged();
notifyObservers("Time left " +

100

((timeLeft -= waitTime) / 1000) + "s before requesting the
result");

}
}

}

} catch (InterruptedException ie) {
ie.printStackTrace();

}

// do a loop every 3 seconds send the request until
we get the status = READY and the blast result

// End of loop
setChanged();
notifyObservers("Requesting the result for rid: " +

ridentifier.getRid());
StringBuffer query = new

StringBuffer("CMD=Get&FORMAT_TYPE=XML");
query.append("&RID=" + ridentifier.getRid());
String ri = query.toString();

String queryResult = null;
String status = null;

boolean hasResult = false;
int ct = 0;
RE regex = null;
try {

regex = new
RE("QBlastInfoBegin(\\s*)Status=(.*)QBlastInfoEnd") ;

} catch (RESyntaxException ree) {
// We ignore it since we've checked the regex

already!
}
Runtime runtime = Runtime.getRuntime();

synchronized (this) {
while (!hasResult) {

status = null;
queryResult = sendQuery(ri);
boolean matched = regex.match(queryResult);

if (matched) {
status = regex.getParen(2);

}
hasResult = !"WAITING".equals(status);
if (hasResult) {

break;
}

setChanged();
notifyObservers("Waiting " +

NUMBER OF SECOND

Running BLAST using SwingBlast 101

+ " s econds b e f o r e r e - t r y i n g (t o t a l
w a i t i n g t i m e : " + (c t += NUMBER_OF_SECOND) + " s) . "

+ r u n t i m e . f r e e M e m o r y () + " b y t e s
l e f t ") ;

t r y {
wait(NUMBER_OF_SECOND * 1000);

} catch (InterruptedException iel) {
iel.printStackTrace();

}
}

}
if ("UNKNOWN".equals(status)) {

throw new BlastException("Result for RID " +
ridentifier.getRid() + " failed.");

}
setChanged();
String fileName = createTempFileName();
try {

OutputStream outputStream = new
FileOutputStream(fileName);

outputStream.write(queryResult.getBytes());
} catch (lOException ioe) {

throw new BlastException("Saving result for RID
" + ridentifier.getRid()

+ " into " + fileName + " failed.",
ioe) ;

}
notifyObservers("Getting back the blast result in

XML " + queryResult.length());
return fileName;

}

private String sendQuery(String httpQuery) throws
BlastException {

DataOutputStream printer = null;
URLConnection urlConnection;
ByteArrayOutputStream outputStream = null;
String fileName = null;

try {
urlConnection = new

URL(blastUrl).openConnection();
urlConnection.setDoInput(true);
urlConnection.setDoOutput(true);
urlConnection.setUseCaches(false);
urlConnection.setRequestProperty("Content-

Type" , "application/x-www-form-urlencoded");
urlConnection.setRequestProperty("Content-

Length", "" + httpQuery.length());
printer = new

DataOutputStream(urlConnection.getOutputStream());
printer.writeBytes(httpQuery);

102

// Let's read the result
BufferedReader reader = null;
reader = new BufferedReader(new

InputStreamReader(urlConnection.getlnputstream()));
outputStream = new ByteArrayOutputStream();
String str;
while ((str = reader.readLine()) != null) {

outputStream.write(str.getBytes());
}

} catch (MalformedURLException mue) {
mue.printStackTrace();
throw new BlastException(blastUrl + " is

malformed");
} catch (lOException ioel) {

ioel.printStackTrace() ;
throw new BlastException("Could not get the

connection or write to it");
} finally {

try {
printer.close();
printer = null;

} catch (lOException ignore) {
ignore.printStackTrace();

}
}
return outputStream == null ? null :

outputStream.toString() ;
}

private Requestldentifier parseOutReqId(String string)
{

String rid = null;
String rtoe = null;

try {
// <!—QBlastlnfoBegin RID = 1097884888-

2134-17842894979.BLASTQ4 RTOE = 30QBlastInfoEnd-->
RE regex = new

RE("QBlastlnfoBegin(\\s*)RID(\\s*)=\\2(\\S*)(\\s*)RTOE\\2=\\2
(.*)QBlastInfoEnd");

boolean matched = regex.match(string);

if (matched) {
rid = regex.getParen(3);
rtoe = regex.getParen(5);

}
} catch (RESyntaxException ree) {

// We ignore it since we checked the regex
already!

}
if (rid == null || rtoe == null)

return null;
return new Requestldentifier(rid,

Running BLAST using SwingBlast 103

Integer.parseint(rtoe));
}

private String createUrlapiQuery(Map parameters) {
StringBuffer query = new

StringBuffer("CMD=Put&QUERy_BELIEVE_DEFLINE=yes");
try {

query.append("&QUERY=").append(URLEncoder.encode((String)
parameters.get("sequenceText"), "UTF-8"))

.append("&DATABASE=").append((String)
parameters.get("database"))

.append("&PROGRAM=").append((String)
parameters.get("blastType"))

.append("&EXPECT=").append((String)
parameters.get("eValue"));

} catch (UnsupportedEncodingException uee) {
uee.printStackTrace();

}
return query.toString();

}

private String createTempFileName() {
return System.getProperty("Java.io.tmpdir") +

File.separator
+ "blast-" + System.currentTimeMillis() +

".xml";

}
private static String packBy(int i. String s) throws

RESyntaxException {
String substin = "[a-zA-Z]{" + i + " } " ;
String substTo = "$0 ";
RE re = new RE(substin);
return re.subst(s, substTo,

RE.REPLACE_BACKREFERENCES);
}

}

Enhancing the SwingBlast Application

Let's also take a look at the code that generates the GUI for the
application. The SwingBlast Version 1.3 we created in the last Chapter is
shown in Fig. 3.5.

104

SVJIMIllilMSl Mt!l|l

SHi]iiHrii:H

l-'iuiguni

F v;ilur!

rir.ii

Fig. 3.5. SwingBlast version 1.3

We will enhance SwingBlast in a number of ways in this Chapter. In
particular, we will:

1. Introduce a Format button to convert the entered sequence into
Fasta format. In the earlier version, the SwingBlast application
required the user to lose focus away from the text area in order to
perform the formatting.

2. Add a Submit button to send sequences for BLAST searches.

3. Add code behind the BLAST programs (BLASTN, BLASTX, etc.)
so that checking the boxes will enable the user to run the
corresponding BLAST programs.

4. Add functionality to prompt the user to save BLAST search results.

We will call the resulting application SwingBlast Version 2.1. We add
the button widgets we need for the SwingBlast application as we did
previously.

Running BLAST using SwingBlast 105

private JButton formatBtn;
formatBtn = new JButton("Format Sequence");

To place the button in the GUI, we use the jpanel object:

JPanel panel = new JPanel();
panel.add(formatBtn);
seqPanel.add(panel, BorderLayout.CENTER);

To format a sequence, we first need to know when the text area is
populated with a sequence. To do this we implement an event listener,
which was explained in Chapter 2.

private void addListeners() {
formatBtn.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

// Check if sequence is DNA, RNA or protein
// Retrieve text entered in the text area
String sequenceText = sequenceArea.getText();
if (sequenceText == null || sequenceText.length()

0) {
cleanAllParameters();
return;

}

The CleanAllParameters () method clears the text in the text area and
disables the enableFunctions() method which checks the entered
sequence for type, that is, DNA, RNA or protein.

private void cleanAllParameters() {
sequenceArea.setText("");
enableFunctions(-1);

}

Next, let's add the code to format the input sequence. We will program
the format button to cause the sequence in the text area to be wrapped into
lines of 50 bases each and add a Fasta header at the top using the code
below:

private StringBuffer format(String sequence) {
int i = 1;
final int seqLen = sequence.length();
StringBuffer sb = new StringBuffer(seqLen);
if (seqLen > 50) {

char[] chars = sequence.toCharArray();

106

for (int j = 0; j < chars.length; j++) {
sb.append(chars[j]);

if (i++ % 50 == 0) {
sb.append("\n");

}
}

} else {
sb.append(sequence);

}
return sb;

}

We had described the logic to program the check boxes for the various
BLAST algorithms based on the input sequence earlier in Chapter 2. The
application at this stage appears as is shown in Fig. 3.6. Let's test the
application with a fragment of the human cystic fibrosis transmembrane
conductance regulator (CFTR) mRNA sequence (gi: 90421312) we had
described in Chapter 2. Compile and run the application and paste the
sequence in the text area (Fig. 3.7).

sivimil 11.1st lIMp

•• QQCAGQCACCCAQAQTAGTAGG
I . nrGGCATTAGGAeCTTGAQCCCAGACeeCCCTAOCAGGGAC
" .".CAGCGCCCGAGAGACCATGCAGAG
• ;GCCTCTGGAAMGGCCAGGGTT6TCTCCAMC I I I I I I I GAG

•SGACCAGACCAATTTTGAGGAAA
seiiiience -..-.ATACAGACAGCGCCTGGAATTGTCAGACATATACCAAMCCCT

I rGTTGATTCTGCTGAGAATCTAT
•3AAAAATTGGAAAGAGAATG G GATAG AGAG CTGG CTTCAAAGAA

. .'/iTCCTAAACTCATTAATGCCCT
T" .5GCGATGI I I I I I CTGGAGATTTATGTTCTATGGAATCTTTTTAT

liiiiiLir SciiiKMirc

I'myrnm

I I . I I I I IMM!

Clear Submit

Fig. 3.6. SwingBlast Version 2.1

The formatted sequence is shown below (Fig. 3.7).

Running BLAST using SwingBlast 107

SwingBlast Help

Sequence

sSequence1|DNA|420 bp
MTTO GAAO CAWTGACATC AC AG C AG GTC AGAGAAAAA.G GGTTGAGCGG
CAGGCACCCAGAGTAGTAGGTCTTrGGCATTAGGAGCTTGAGCCCAGACG
G C C CTAG C AG G G AC C C C AG C G 0 C C G AGAGAC C ATG C AG AG GTC e C CTCTG
GAAAa.G G C C AG C GTTGTi^TC i^AAAC I I I I I I I CAG CTG GAC C AG AC C AAT
TTTGAGGAAAGGATACAGACAGCGCCTGGAATTGTCAGACATATACCAAA
TCCCTTCTGTTGATTCTGCTGACAATCTATCTGMAAATTGGASAGAGAA
TO G G ATAG AG AG CTG G CTTC,i\AAGASMATCCTAAACTCATrAATG C C CT
TC G G C GATGI I I I I I CTG GAGATTTATGTTCTATG GMTCTTTTTATATT
TAG G G GAAGTC AC C AAAG C A

Program BlastN

Format Sequence

BlastX TBIastX

Clear Submit

Fig. 3.7. Fasta formatted DNA sequence

To align the Fasta format sequence properly, we had described the use
of a monospaced font earlier for the DNA alphabet:

final Font sf = sequenceArea.getFont();
Font f = new Font("Monospaced", sf.getStyle(),

sf.getSize());
sequenceArea.setFont(f);

An explicit monospace font such as Courier can also be used provided it
is installed on your machine. The application with the sequence formatted
in monospace font is shown in Fig. 3.8.

108

SwingBlast Help

Sequence

>3equencelIDHAI420 bp

AATTGGAAGCAAATGACATCACAGCAGGTCAGAGAAAAAGGGTTGAGCGG

CAGGCACCCAGAGTAGTAGGTCTTTGGCATTAGGAGCTTGAGCCCAGACG

GCCCTAGCAGGGACCCCAGCGCCCGAGAGACCATGCAGAGGTCGCCTCTG

GAAAAGGCCAGCGTTGTCTCCAAACTTTTTTTCAGCTGGACCAGACCAAT

TTTGAGGAAAGGATACAGACAGC GC CTGGAATTGTCAGACATATAC CAAA

TCCCTTCTGTTGATTCTGCTGACAATCTATCTGAAAAATTGGAAAGAGAA

TGGGATAGAGAGCTGGCTTCAAAGAAAAATCCTAAACTCATTAATGCCCT

TC GGC GATGTTTTTTCTGGAGATTTATGTTCTATGGAATCTTTTTATATT

TAGGGGAAGTCACCAAAGCA

Program BlasIN

FIJI mat Sei]uuiii;u

BldslX TElldiitX

Clear Submit

Fig. 3.8. Fasta formatting with a monospace font

Note that the application first checks if the sequence is in Fasta format
before applying the formatting. If a sequence that is pasted is already in
Fasta format, clicking the "Format Sequence" button does not have any
effect. The user can now select one or more of the available BLAST
options and hit Submit to run the search. Let's run a search with the partial
CFTR sequence using BLASTN and BLASTX using SwingBlast 2.1 (Fig.
3.9).

Running BLAST using SwingBlast 109

SvuingBlast Heip

> 3 e quenc e11DNAI 42 0 bp

AATTGGAAGCAAATGACATCACA&CAGGTCAGAGAAAAAGGGTT&AGCGG

CAGGCACC CAGAGTAGTAGGTCTTrGGCATTAGGAGCTTGAGC C CAGAC G

GCCCTAGCAGGGACCCCAGCGCCCGAGAGACCATGCAGAGGTCGCCTCTG

GAAAAGGC CAGC GTTGTCTCC AAACTTmTTCAGCTGGAC CAGAC CAAT

TTTGAGGAAAGGATACAGACAGC GC CTGGAATTGTCAGACATATAC CAAA

TCCCTTCTGTTGATTCTGCTGACAATCTATCTGAAAAATTGGAAAGAGAA

TGGGATAGAGAGCTGGCTTCAAAGAAAAATCCTAAACTCATTAATGCCCT

TCGGCGATGTTTTTTCTGGAGATTTATGTTCTATGGAATCTTTTTATATT

TAGGGGAAGTCACCAAAGCA

Sequence

Format Sequence

Program r' BiastN v BlastX TBIastX

Clear Submit

Fig. 3.9. Running a BLASTN and BLASTX search

We get a notification once each of the requested BLAST search is
complete as shown below for the BLASTN search (Fig 3.10). After each
analysis is complete, the application also prompts the user to save the
results of the search in a local text file (Fig. 3.11 - 3.12).

hisstn DLAST fortho sctiucncc s(artinii with >Sc(iucncc1|DNA|420 hp
AAI iCĤ AA Uifi iini'^hKil!

OK

Fig. 3.10. BLAST search status notification

no

i Siiw! In: 1 iliiiSJ LV!:;-J : g g i l ^ - |

Fifes a! iyjie: i All Files

Ssive Cancei

Fig. 3.11. Saving BLAST results in a local file

BLAST result sa<je(i in C:bldst'iJ)las!rt resutts.lxt

OK

Fig. 3.12. Saving BLAST results in a local file

Note that if a file of that name already exists, the application warns the
user and provides an option to overwrite the existing file or save it with a
different name (Fig. 3.13).

\ i
C;'ii)iastU)last(!_ resisits.tKt a!f efsiiy exists.

Do you want to overwrite?

To reriaiHe the file select "No".

i V«;s M No :

Fig. 3.13. Saving BLAST results in a different file

Running BLAST using SwingBIast 111

This functionality is implemented within the saveBlasto function as
shown in Listing 3.5.

Listing 3.5. The saveBlast() function

private void saveBlast(String tmpFileName) {
final String fileNameFromUser = getFileNameFromUser();
if (fileNameFromUser == null)
return;

final File tmpFile = new File(tmpFileName);
final File userFile = new File(fileNameFromUser);
if (userFile.exists{)) {

String errMes = fileNameFromUser + " already
exists. \nDo you want to overwrite?\n" + "To rename the file
select \"No\".";

int choice = JOptionPane.showConfirmDialog(this,
errMes, "Saving BLAST Result", JOptionPane.YES_NO_OPTION);

if (choice == JOptionPane.YES_OPTION) {
userFile.delete();
tmpFile.renameTo(userFile);

} else {
saveBlast(tmpFileName);

}
} else {
tmpFile.delete();
JOptionPane.showMessageDialog(SequenceForm2_2.this,

"BLAST result saved in " + fileNameFromUser);
}

}

If the user doesn't want to overwrite an existing file, a new file name

must be supplied. This is implemented in the getFileNameFromUser ()

function described below (Listing 3.6).

Listing 3.6. The getFileNameFromUser() function

p r i v a t e S t r ing getFileNameFromUser() {
JFileChooser fc = new JF i l eChoose r () ;
i f (fc .showSaveDialog(this)

JFileChooser.APPR0VE_0PTI0N) {
r e t u r n f c . g e t S e l e c t e d F i l e () . g e t A b s o l u t e P a t h () ;

} e l s e {
r e tu rn n u l l ;

}
}

112

The BLAST results can be viewed in their raw format (as saved in the
text file above) using a text editor (Fig. 3.14) for parsing to diplay the
results in a graphical format. The complete code for swingBlast version
2.1 is shown in Listing 3.7.

File Edit Format View Help

|=-'̂ ym1 v e r 5 i o n = " l . O'"'^-;-! DOCTvPE e la^TOutpuT P U B L I C " - / / N C B I / / N C B I B l a s t o u t p u t / E N "
"NCBl_B las tOutpu 'c . d t d " > < B l a s t O u t p u t > < B l a s t O u t p u t _ p r o g r a n i > b 1 a s t n < / B l a s t O u t p u t _ p r o g r a i T i >
• : B l a 5 t 0 u t p u T _ v e r 5 l o n > b 1 a 3 T n 2. 2 . 10 [o c T - 1 9 - 2 0 0 4] < / B 1 a5TOutpuT_ver5 i on>
• ; B l a s t O u t p u t _ r e f e r e n c e > - R e f e r e n c e : A l t s c h u l , S tephen F, , Tnamas L. Madden, A l e j a n d r o A.
S c h a f f e r , ~ J i n g h u i Zhang, Zheng Zhang, Webb M i l l e r , and Dav id J . L ipman (1 9 9 7) ,
- A q u o t ; G a p p e d BLAST and PSI-BLAST: a new g e n e r a t i o n c f p r o t e i n da tabase
search~progran i5d 'quo t ; , N u c l e i c A c i d s Res. 25 :33S9-3402 . < / B l a s t O u t p u t _ r e f e r e n c e >
<B la5 tOu tpu t_db>n r< /B la5TOUTpu t_db> < B l a 5 t o u T p u t _ q u e r y -
lD>C|i I 59953951 r e f | NH_000492. 2 | < /B l a s t O u t p u t _ q u e r y - l D > <B1 a s t O u t p u t _ c | u e r y - d e f >HDmo
s a p i e n s c y s t i c f i b r o s i s t ransmembrane conduc tance r e n u l a t o r , A T P - b i n d i n g c a s s e t t e (s u b -
f a m i i y C, member T) (CFTR), m R N A < / B l a s t O u t p u t „ q u e r y - d e f > < B l a s t O u t p u t „ q u e r y -
1 e n > 6 l 2 9 < / D l a s t O u t p u t _ q u e r y - 1 e n > < B l a s t O u t p u t _ p a r a m > <ParaiTieters>
< P a r a m e t e r £ _ e x p e c t > 0 . 0 0 1 < / p a r a m e t e r 5 _ e x p e c t > < P a r a m e t e r £ _ s c - m a t c h > l < / P a r a m e t e r s _ s c -
match> <Pa rame te rs_sc -m is iT i a t ch> -3< /Pa rame te rs_sc -m isma tch> <Pa rame te rs_gap -
open>5</para f f l e te rs_gap-open> < p a r a i i i e t e r s _ g a p - e x t e n d > 2 < / p a r a m e t e r s _ g a p - e x t e n d >
< / P a r a m e t e r s > < / B l a s t O u t p u t _ p a r a m > < B l a s t O u t p u t _ i t e r a t i o n s > < l t e r a t i o n >
< i t e r a t i o n _ i t e r - n u m > l < / i t e r a t i o n _ i t e r - n u n i > < i t e r a t i o n _ h i t s > < H i t >
<H i t_num> l< /H i t _nu tn> < H i t _ i d > g i | 699599 51 r e f | NM_QQCi492.2 | < / H i t _ i d >
<Hi t_def>Homo s a p i e n s c y s t i c f i b r o s i s t ransmembrane conduc tance r e g u l a t o r , A T P - b i n d i n g
c a s s e t t e (s u b - f a m i l y C, member 7) (CFTR), mRNA</H i t_de f>
< H i t _ a c c e s s i o n > N M _ 0 0 0 4 9 2 < / H i t _ a c c e s s i o n > < H i t _ 1 e n > 6 1 2 9 < / H i t _ 1 e n >

Hs p_num>l</Hs p_nLim> <Hs p_bi t -
<Hsp_score>6129</Hsp_score>

< H s p _ q u e r y - f r o m > l < / H s p _ q u e r y - f r o i n >
<Hs p_hi t - f r •m> i< /Hs p_hi t - f r om>

< H s p _ q u e r y - f r a m e > l < / H s p „ q u e r y - f r a m e >
< H s p _ i d e n t i t y > 6 1 2 9 < / H s p _ i d e n t 1 t y >

< H s p _ a 1 i g n - 1 e n > 5 l 2 9 < / H s p _ a l n g n - l e n >

• HS p_qs eq>AATTGGAAGCAAATGACATCACAGCAGGTCAGAGAAAAAGGGTTGAGCGGCAGGCACCCAGAGTAGTAGGTCTTTGGCA
TTAGGAGCTTGAGCCCAGACGGCCCTAGCAGGGACCCCAGCGCCCGAGAGACCATGCAGAGGTCGCCTCTGGAAAAGGCCAGCGTTGTC
TiIiIAAACTTTTTTTCAGCTGGACCAGACCAATTTTGAGGAAAGGATACAGACAGCGCCTGGAATTGTCAGACATATACCAAATCCCTTi:
TGTTGATTCTGCTGACAATCTATCTGAAAAATTGGAAAGAGAATGGGATAGAGAGCTGGCTTCAAAGAAAAATCCTAAACTCATTAATG
'I'lGTTCGGCGATGTTTTTTCTGGAGATTTATGTTCTATGGAATCTTTTTATATTTAGGGGAAGTCACCAAAGCAGTACAGCCTCTCTTA
iITijGGAAGAATCATAGCTTCCTATGACCCGGATAACAAGGAGGAACGCTCTATCGCGATTTATCTAGGCATAGGCTTATGCCTTCTCTT
TATTGTGAGGACACTGCTCCTACACCCAGCCATTTTTGGCCTTCATCACATTGGAATGCAGATGAGAATAGCTATGTTTAGTTTGATTT

<Hi t_h5pS> <HSp:
s c o r e > 1 2 1 5 0 . 3 < / H s p _ b i t - s c o r e >
<Hsp_eva lue>0</Hsp_eva1ue>
•• H s p _ q u e r y - t o>612 9</Hs p _ q u e r y - t o >

• : H s p „ h i t - t o > 6 1 2 9 < / H s p „ h i t - t o >
< H s p _ h i t - f r a m e > l < / H s p _ h i t - f r a m e >

< H s p _ p o s i t i v e > 6 1 2 9 < / H s p _ p o s i t i v e >

Fig. 3.14. Viewing saved BLAST results in text format

Listing 3.7. SwingBlast Version 2.1

package o r g . j f b , s w i n g b l a s t 2 ;

import org.apache.regexp.RE;
import org.apache.regexp.RESyntaxException;
import org.jfb.blast-Blast;
import org.jfb.blast.BlastException;
import org.jfb.blast.BlastManager;
import org.jfb.jqblast.Requestldentifier;

import j avax,swing,*;
import j ava.awt.*;
import j ava.awt.event.ActionEvent;
import Java,awt.event.ActionListener;
import Java.io.File;
import Java.util.ArrayList;
import Java.util.HashMap;
import Java.util-Observable;
import Java-util-Observer;

public class SwingBlast2_l extends JFrame {

Running BLAST using SwingBlast 113

private static final String APP_NAME = "SwingBlast";
private static final String APP_VERSION = "Version

2.1";

private static final Dimension LABEL_PREFERRED_SIZE =
new Dimension(57, 16);

private static final Dimension COMBO_PREFERRED_SIZE =
new Dimension(60, 25);

private static final Dimension CP_PREF_SIZE = new
Dimension(480, 380);

private static final int TYPE_DNA = 0;
private static final int TYPE_RNA = 1;
private static final int TYPE_PROTEIN = 2;

private static final String[] BLAST_PROGRAMS_DNA = new
String[]{"BlastN", "BlastX", "TBlastX"};

private static final String[] BLAST_PROGRAMS_PROTEIN =
new String[]{"BlastP", "TBlastN"};

private static final String[] DATABASES = new
String[]{"nr", "est_human"};

private static final String[] EVALUES = new
String[]{"0.001", "0.01", "0.1", "1", "10", "100"};

private JComponent newContentPane;
private JTextArea sequenceArea;
private JScrollPane scrollPaneArea;

private JCheckBox[] chbDna;
private JCheckBoxf] chbProtein;
private JComboBox cobDbs;
private JComboBox cobEvalues;

private JButton submitBtn;
private JButton formatBtn;
private JButton clearBtn;

private JMenuItem aboutltem;
private JMenuItem quitltem;
private static final double SEQ_THRESHOLD = 0.85;
private static final int TYPE_UNKNOWN = -1;
private int typeOfSequence;
private static final String SEQ_HEADER_GEN

">Sequencel| ";
private static final int SUB_MAX = 30;

static {
try {

Class.forName("org.jfb.jqblast.JQBlast");
} catch (ClassNotFoundException e) {

e.printStackTrace();
}

}

114

public SwingBlast2_l() {
super();

}

private void seqFormlnit() {
setTitle(APP_NAME + " " + APP_VERSION);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
newContentPane = new JPanel();
newContentPane.setOpaque(true);
newContentPane.setLayout{new BorderLayout());

setContentPane(newContentPane) ;

// Add the menu bar.
JMenuBar menu = new JMenuBar();
JMenu swingBlastMenu = new JMenu(APP_NAME);
quitltem = new JMenuItem("Quit");
swingBlastMenu.add(quitltem) ;
menu.add(swingBlastMenu);

JMenu helpMenu = new JMenu("Help");
aboutltem = new JMenuItem("About");
helpMenu.add(aboutltem);
menu.add(helpMenu) ;
setJMenuBar(menu);

// Create the seqLbl pane
JPanel sequencePanel = new JPanel();
JLabel seqLbl = new JLabel("Sequence");
sequenceArea = new JTextArea();
sequenceArea.setLineWrap(true);
final Font sf = sequenceArea.getFont();
Font f = new Font("Monospaced", sf.getStyle(),

sf.getSize());
sequenceArea.setFont(f);
scrollPaneArea = new JScrollPane(sequenceArea);
scrollPaneArea.setPreferredSize(new Dimension(300,

200));
formatBtn = new JButton{"Format Sequence");

sequencePanel.setLayout(new
BoxLayout(sequencePanel, BoxLayout.LINE_AXIS));

sequencePanel.add(seqLbl);
sequencePanel.add(Box.createRigidArea(new

Dimension(10, 0)));
sequencePanel.add(scrollPaneArea);

JPanel seqPanel = new JPanel();
seqPanel.setLayout(new BorderLayout());
seqPanel.add(sequencePanel, BorderLayout.NORTH);
JPanel panel = new JPanel();
panel.add(formatBtn);

Running BLAST using SwingBlast 115

seqPanel.add(panel, BorderLayout.CENTER);

II'La.-^ out the buttons from left to right.
JPanel buttonPane = new JPanel();
submitBtn = new JButton("Submit");
clearBtn = new JButton("Clear");

buttonPane.setLayout(new BoxLayout(buttonPane,
BoxLayout.LINE_AXIS));

buttonPane.add(Box.createHorizontalGlue());
buttonPane.add(Box.createRigidArea(new

Dimension(10, 0)));
buttonPane.add(clearBtn);
buttonPane.add(submitBtn);

JPanel jPanel = new JPanel();
jPanel.setLayout(new BorderLayout());
jPanel.setBorder(BorderFactory.createEmptyBorder(0,

10, 10, 10));
jPanel.add(seqPanel, BorderLayout.NORTH);
jPanel.add(createProgramPanel(),

BorderLayout.CENTER);
jPanel.add(buttonPane, BorderLayout.SOUTH);

newContentPane.add(j Pane1, BorderLayout.CENTER);
newContentPane.setPreferredSize(CP_PREF_SIZE);

//Display the window.
pack();
Dimension screenSize =

Toolkit.getDefaultToolkit().getScreenSize();
setLocation((screenSize.width - CP_PREF_SIZE.width)

/ 2,
(screenSize.height - CP_PREF_SIZE.height) /

2);
setVisible(true);
addListeners();

}

private JPanel createProgramPanel() {
// Let's get the program panel using the same

layout
JPanel programPanel = new JPanel();
JLabel program = new JLabel("Program");
program.setPreferredSize(LABEL_PREFERRED_SIZE);
chbDna = new JCheckBox[BLAST_PROGRAMS_DNA.length];
String blastProgram;
for (int i = 0; i < BLAST_PROGRAMS_DNA.length; i++)

{
blastProgram = BLAST_PROGRAMS_DNA[i];
chbDna[i] = new JCheckBox(blastProgram);
chbDna[i].setMaximumSize(COMBO_PREFERRED_SIZE);

}

116

chbProtein = new
JCheckBox[BLAST_PROGRAMS_PROTEIN.length];

for (int i = 0; i < BLAST_PROGRAMS_PROTEIN.length;
i++) {

blastProgram = BLAST_PROGRAMS_PROTEIN[i];
chbProtein[i] = new JCheckBox(blastPrograin);

chbProtein[i].setMaximumSize(COMBO_PREFERRED_SIZE);

}

programPanel.setLayout(new BoxLayout(programPanel,
BoxLayout.LINE_AXIS));

programPanel.add(program);
programPanel.add(Box.createRigidArea(new

Dimension(10, 0)));
for (int i = 0; i < chbDna.length; i++) {

programPanel.add(chbDna[i]);
programPanel.add(Box.createRigidArea(new

Dimension(5, 0)));

}
for (int i = 0; i < chbProtein.length; i++) {

programPanel.add(chbProtein[i]);
if (i + 1 < chbProtein.length)

programPanel.add(Box.createRigidArea(new
Dimension(5, 0)));

}
programPanel.add(Box.createHorizontalGlue());
JPanel paramPanel = new JPanel();
paramPanel.setLayout(new BoxLayout(paramPanel,

BoxLayout.PAGE_AXIS));

paramPanel.add(programPanel);

paramPanel.add(Box.createRigidArea(new Dimension(0,

5))) ;

// Create the database panel using the same layout
JPanel databasePanel = new JPanel();
JLabel database = new JLabel("Database");
database.setPreferredSize(LABEL_PREFERRED_SIZE);
cobDbs = new JComboBox(DATABASES);
cobDbs.setMaximumSize(COMBO_PREFERRED_SIZE);

databasePanel.setLayout(new
BoxLayout(databasePanel, BoxLayout.LINE_AXIS));

databasePanel.add(database);
databasePanel.add(Box.createRigidArea(new

Dimension(10, 0)));
databasePanel.add(cobDbs);
databasePanel.add(Box.createHorizontalGlue());
paramPanel.add(databasePanel);

paramPanel.add(Box.createRigidArea(new Dimension(0,

5)));

Running BLAST using SwingBlast 117

// Create the E-Value panel using the same layout
JPanel evaluePanel = new JPanel();
JLabel eValue = new JLabel("E-value");
eValue.setPreferredSize(LABEL_PREFERRED_SIZE);
cobEvalues = new JComboBox(EVALUES);
cobEvalues.setMaximumSize(COMBO_PREFERRED_SIZE);

evaluePanel.setLayout(new BoxLayout(evaluePanel,
BoxLayout.LINE_AXIS));

evaluePanel.add(eValue);
evaluePanel.add(Box.createRigidArea(new

Dimension(10, 0))) ;
evaluePanel.add(cobEvalues);
evaluePanel.add(Box.createHorizontalGlue());
paramPanel.add(evaluePanel);
paramPanel.add(Box.createRigidArea(new Dimension(0,

5))) ;

enableFunctions(TYPE_UNKNOWN);
return paramPanel;

}

private void addListeners() {
quitltem.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
System.exit(0);

}
});

aboutltem.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

J0ptionPane.showMessageDialog(SwingBlast2_l.this, APP_NAME +
" " + APP_VERSION,

"About " + APP_NAME,
JOptionPane.INFORMATION_MESSAGE);

}
});

submitBtn.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

StringBuffer errMes = new
StringBuffer("<HTML>Please provide the following
parameters:
");

String sequence = sequenceArea.getText();
boolean misPar = false;
if (sequence == null | | sequence.length()

== 0) {
errMes.append("- Sequence
");
misPar = true;

}

118

String database = (String)
cobDbs.getSelectedItem();

String[] blastTypes = getBlastTypes();
if (blastTypes == null || blastTypes.length

== 0) {
errMes.append("- blast
");
misPar = true;

}
final String endOfPleaseMes = "</htinl>";
errMes.append(endOfPleaseMes);
if (misPar) {

JOptionPane.showMessageDialog(SwingBlast2_l.this, errMes);
return;

}
String evalue = (String)

cobEvalues .getSelectedItein() ;
runBlasts(sequence, blastTypes, database,

evalue);
}

});

clearBtn.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

cleanAllParameters();
}

});

formatBtn.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

// Check sequence type
// Retrieve text entered in the text area
final String sequenceText =

sequenceArea.getText();
if (sequenceText == null ||

sequenceText.length() ==0) {
CleanAllParameters();
return;

}
// Format sequence in FASTA format
int idx = sequenceText.indexOf(">");
final boolean fastaFormatted = idx != -1;
String header = null;
String sequence = "";

if (fastaFormatted) {
int returnldx =

sequenceText.indexOf("\n");

if (returnldx != -1) {
header = sequenceText.substring(0,

returnldx);
sequence =

Running BLAST using SwingBlast 119

sequenceText.substring(returnldx + 1,
sequenceText.length()).replaceAll("\\s", "").toLowerCase();

}
// Check if sequence entered
updateSequenceArea(header, sequence,

fastaFormatted);
} else {

updateSequenceArea(SEQ_HEADER_GEN,
sequenceText.toLowerCase(), fastaFormatted);

}
}

});
}

private void updateSequenceArea(String header. String
sequence, boolean fastaFormatted) {

String seqText;
if (sequence.length() == 0)

return;

// Retrieve sequence type
this.typeOfSequence = TYPE_UNKNOWN;
try {

this.typeOfSequence =
getSequenceType(sequence);

} catch (RESyntaxException rese) {
rese.printStackTrace();

}

String type = null;
String unitOfLength = null;

switch (this.typeOfSequence) {
case TYPE_DNA:

type = "DNA";
unitOfLength = " bp" ;
break;

case TYPE_RNA:
type = "RNA";
unitOfLength = " bp";
break;

case TYPE_PROTEIN:
type = "Protein";
unitOfLength = " aa";
break;

default:
type = "N/A";
unitOfLength = " N/A";

}

if (!fastaFormatted) {
seqText = header + type + " | " +

sequence.length() + unitOfLength + "\n" +

120

format(sequence.toUpperCase ()) ;
} else {

seqText = header + "\n"
format(sequence.toUpperCase());

}

// Display results in the sequence area
sequenceArea.setText(seqText);

enableFunctions(this.typeOfSequence) ;
}

private StringBuffer format(String seq) {
int i = 1;
String sequence = seq.replaceAll("\n", "") ;
final int seqLen = sequence.length();
StringBuffer sb = new StringBuffer(seqLen);
if (seqLen > 50) {

char[] chars = sequence.toCharArray();
for (int j = 0; j < chars.length; j++) {

sb.append(chars(j]);

if (i++ % 50 == 0) {
sb.append("\n");

}
}

} else {
sb.append(sequence);

}
return sb;

}

private void runBlasts(final String sequence, String[]
blastTypes, String database. String evalue) {

Map param = new HashMap();
param.put("sequenceText", sequence);
param.put("database", database);
param.put("eValue", evalue);

final Observer observer = new Observer() {
public void update(Observable o. Object arg) {

System.out.println("" + arg);
}

};

try {
for (int i = 0; i < blastTypes.length; i++) {

final String blastType = blastTypes[i];
final Map tmp = new HashMap(param);
tmp.put("blastType", blastType);
Thread t = new Thread(new Runnable() {

public void run() {
try {

Running BLAST using SwingBlast 121

final Blast blast =
BlastManager.createBlast();

blast.addObserver(observer);
Requestldentifier

requestldentifier = (Requestldentifier)
blast.submitQuery(tmp);

final String fileName
blast.requestResult(requestldentifier).toString();

final StringBuffer sb =
new

StringBuffer().append(blastType).append(" BLAST for the
sequence starting with ")

.append(sequence.length() > SUB_MAX ? sequence.substring(0,
SUB_MAX) : sequence).append(" has finished!");

Runnable runnable = new
Runnable() {

public void run() {

JOptionPane.showMessageDialog(SwingBlast2_l.this,
sb.toString());

saveBlast(fileName);
}

};

SwingUtilities.invokeLater(runnable);
} catch (BlastException be) {

be.printStackTrace();
} catch (Throwable e) {

e.printStackTrace();
}

}
});
t.start();

}
} catch (Throwable e) {

e.printStackTrace();
}

}

private void saveBlast(String tmpFileName) {
final String fileNameFromUser =

getFileNameFromUser();
if (fileNameFromUser == null)

return;

final File tmpFile = new File(tmpFileName);
final File userFile = new File(fileNameFromUser);
String finalName = tmpFileName;
if (userFile.exists()) {

String errMes = fileNameFromUser + " already
exists.\nDo you want to overwrite?.";

int choice

122

JOptionPane.showConfirmDialog(this, errMes, "Saving BLAST
Result", JOptionPane.YES_NO_OPTION);

if (choice == JOptionPane.YES_OPTION) {
boolean renamed =

tmpFile. renaineTo{userFile);
if (renamed) {

tmpFile.delete() ;
finalName = fileNameFromUser;

}
} else {

saveBlast(tmpFileName);
return;

}
} else {

boolean renamed = tmpFile.renameTo(userFile);
if (renamed) {

tmpFile.delete() ;
finalName = fileNameFromUser;

}
}
JOptionPane.showMessageDialog(SwingBlast2_l.this,

"BLAST result saved in " + finalName);
}

private String getFileNameFromUser() {
JFileChooser fc = new JFileChooser();
if (fc.showSaveDialog(this) ==

JFileChooser.APPROVE_OPTION) {
return fc.getSelectedFile().getAbsolutePath();

} else {
return null;

}
}

protected void finalize() throws Throwable {
super.finalize();

}

private void cleanAllParameters() {
sequenceArea.setText("");
enableFunctions(-1);

}

private String[] getBlastTypes() {
JCheckBox[] allTypes = typeOfSequence == TYPE_DNA

I I typeOfSequence == TYPE_RNA
? chbDna : typeOfSequence == TYPE_PROTEIN ?

chbProtein : null;
if (allTypes == null) return null;

ArrayList types = new ArrayList();
for (int i = 0; i < allTypes.length; i++) {

Running BLAST using SwingBlast 123

JCheckBox cb = allTypes[i];
if (cb.isSelected())

types.add(cb.getText().toLowerCase());
}
final String[] res = new String[types.size()];
types.toArray(res);
return res;

}

private void enableFunctions(int typeOfSequence) {
if (typeOfSequence == TYPE_DNA || typeOfSequence ==

TYPE_RNA) {
setChb(chbDna, true);
setChb(chbProtein, false);
setCob(cobDbs, true);
setCob(cobEvalues, true);

} else if (typeOfSequence == TYPE_PROTEIN) {
setChb(chbProtein, true);
setChb(chbDna, false);
setCob{cobDbs, true);
setCob(cobEvalues, true);

} else {
setChb(chbProtein, false);
setChb(chbDna, false);
setCob(cobDbs, false);
setCob(cobEvalues, false);

}
}

private static void setchb(JCheckBox[] boxes, boolean
value) {

for (int i = 0; i < boxes.length; i++) {
boxes[i].setEnabled(value);
boxes[i].setSelected(false);

}
}

private static void setCob(JComboBox component, boolean
value) {

component.setEnabled(value);
component.setSelectedIndex(0);

}

public static int getSequenceType(String sequence)
throws RESyntaxException {

RE re = new RE("[actgnACGTN]+");
String[] strings = re.split(sequence);
int numbOfLettersOtherThanATGCNs = 0;

for (int i = 0; i < strings.length; i++) {
numbOfLettersOtherThanATGCNs

strings[i].length();
}

124

int length = sequence.length();
int numbOfACGTNs = length

numbOfLettersOtherThanATGCNs;

re = new RE("[uU]+");
strings = re.split(sequence);
int numbOfLettersOtherThanUs = 0;

for (int i = 0; i < strings.length; i++) {
numbOfLettersOtherThanUs +=

strings[i].length();
}
int numbOfUs = sequence.length()

numbOfLettersOtherThanUs;

if (numbOfACGTNs / (double) length > SEQ_THRESHOLD)
{

return TYPE_DNA;
} else if ((numbOfACGTNs + numbOfUs) / (double)

length > SEQ_THRESHOLD) {
return TyPE_RNA;

} else {
return TYPE_PROTEIN;

}
}

public static void main(String[] args) {
SwingUtilities.invokeLater(new Runnable() {

public void run() {
final SwingBlast2_l sequenceForm = new

SwingBlast2_l();
sequenceForm.seqFormlnit();

}
}) ;

}
}

Retrieving Sequences From GenBanl< Using BioJava

Frequently, users know GI numbers of sequences that they use regularly
in their research and it is normal for them to submit a GI number of the
corresponding sequence for BLAST searches on the NCBI BLAST
service. We will next implement a feature in swingBlast whereby users
can retrieve a sequence from GenBank based on its GI number. We will
use existing BioJava routines to retrieve sequences corresponding to a
GenBank ID that users may enter into the sequence field. We will need the
following BioJava libraries to accomplish this task:

Running BLAST using SwingBlast 125

org.bioj ava.bio.seq.Sequence;

org.bioj ava.bio.seq.db.GenbankSequenceDB;

org.bioJava.bio.seq.io.SeqIOTools;

These libraries can be obtained from the BioJava website (Binary for
J2SE 1.4 or later, as of this writing) at the following URL:

http://bioJava.org/wiki/BioJava:Download

Since users have the option of entering sequences directly into the
sequence field, we need to first test if the entered text is a sequence or a
genbank ID. We will do this using regular expressions as outlined below:

text = text.replaceAll("\\s", " ") ;
RE re = null;
try {

re = new RE("[0-9]+");
} catch (RESyntaxException el) {

el.printStackTrace();
}

boolean isGenBankID = re.match(text);

We then create a new instance of the class GenbankSequenceDB that will
retrieve the Genbank record, seqobject contains the entire GenBank
record, that is, the header information, any sequence features and
annotation and the actual nucleotide or amino acid sequence.

seqObject = genbankSequenceDB.getSequence(text);

To see the content of the sequence object retrieved we can write it to the
system output using seqiOTools as followed:

SeqIOTools.writeGenbank(System.out, seqObject);

To grab only the sequence we then use the method seqstring() from
the seqObject.

sequence = seqObject.seqString();

The complete code is as follows:

import org.bioj ava.bio.seq.Sequence;
import org.bioj ava.bio.seq.db.GenbankSequenceDB;

126

import org.bioJava.bio.seq.io.SeqIOTools;

text = text.replaceAll("\\s", " ");
RE re = null;
try {

re = new RE("[0-9]+");
} catch (RESyntaxException el) {

el.printStackTrace();
}

boolean isGenBanklD = re.match(text);

if (isGenBankID) {
GenbankSequenceDB genbankSequenceDB = new

GenbankSequenceDB();
header = "GI:" + text;
Sequence seqObject = null;
try {

seqObject = genbankSequenceDB.getSequence(text);
SeqIOTools.writeGenbank(System.out, seqObject);

} catch (Exception e) {
e.printStackTrace();

}
sequence = seqObject.seqString();

}

The "Format Sequence" in the application will now have a dual function
when a GI number is pasted in the text area - it will retrieve the sequence
from GenBank and simultaneously convert it into the Fasta format. We
will call this version of the application swingBlast version 2.2. The code
for SwingBlast Version 2.2 with this feature implemented is shown in
Listing 3.8.

Listing 3.8. SwingBlast Version 2.2

Runnable runnable = new Runnable() {
public void run() {

String seq = null;
final boolean isGenBankID

GenbankDB.isGenBankId(sequenceText);

if (isGenBankID) {
boolean canGetSeq = true;
GenbankSequenceDB genbankSequenceDB

GenbankSequenceDB();
header = "GI:" + text;
Sequence seqObject = null;
try {

Running BLAST using SwingBlast 127

segObject =
genbankSequenceDB.getSequence(text);

SeqIOTools.writeGenbank(System.out,
seqObject);

} catch (Exception e) {
e.printStackTrace() ;

}
seq = seqObject.seqString();
if (seq == null || seq.length() = = 0 ||

IcanGetSeq) {

JOptionPane.showMessageDialog(SwingBlast2_2.this,
"Cannot get the sequence for GenBank ID

" + sequenceText);
return;

}
}

SwingBlast2_2.this.sequence = seq;
Runnable runnableAwt = new Runnable() {

public void run() {
String seqFin = SwingBlast2_2.this.sequence;
String header = null;
String sequence = "";

if (isGenBankID) {
int i = seqFin.indexOf("\n");
header = seqFin.substring(0, i);
sequence = seqFin.substring(i +

"\n".length(), seqFin.length());
} else {

sequence = sequenceText.toLowerCase();
header = SEQ_HEADER_GEN;

}
// We first check that there is something.
updateSequenceArea(header, sequence,

fastaFormatted, isGenBankID);
}

};
SwingUtilities.invokeLater(runnableAwt);

};
new Thread(runnable).start();

Fig. 3.15 and Fig. 3.16 below show the results of pasting a GenBank Id in
the sequence area of SwingBlast Version 2.2.

128

Mvilnilil.isl Mi-I|i

Si-i|lliMll i:

Format Sequence

I'lUillJIII

ll'lldlldSi'

I V'lliin

Clear Submit

Fig. 3.15. Pasting GI number in the text area for sequence retrieval

SiNinyBlast Help

Sequence

>gil699S99Sli:etl!IH_000492.2l Homo 3aplen3 cystic fibrosis t-

ransmeitLbrane conductance regulator, ATP-blnding cassette (s

ub-tamilY C, memiier 7) (CfTR), iiiHIIA

AATTGGAAGCAAATGACATCACAGCAGGTCAMGAAAAAGISGITGAISCGG

CAGGCACC C AGAGTAGTAGGTCTTTGGC ATTAGGAG CTTGAGC C C AGAC G

GCCCTAGCAGGGACCCGAGCGCCCGAGAGACCATGCAGAGGTCCCCTCTG

GAAAAGGC C AGC GTTGTCTC C AAACTTTTTTTC AGCTGCAC C AGAC CAAT

TTTGAGGAAAGGATACAGACAGCGCCTGGAATTGTCAGACATATACCAAA

TCCCTTCTGTTGATTCTGCTGACAATCTATCTGAAAAJlTTGGjlAAGAGAA

TGGGATAGAGA GCTGGCTTCAAAGAAAAATC CTAAACTC ATTAATGC C CT

TCGGCGATGTTTTTTCTGGAGATTTATGTTCTATGGAATCTTTTTATATT

Tji(zr.r.r,!i vr,Tr j,rr

Format Sequence

Program BlastN BlastX

Database nr '^

TBIastX

E-value 0.001 ^

Clear Submit

Fig, 3.16. Retrieving a sequence from GenBank from its GI number

Running BLAST using SwingBlast 129

Although the Fasta header in Fig. 3.16 appears to run over multiple lines,
it is actually a single line that has wrapped over because of the size of the
text area.

Retrieving GenBanIc Without BioJava

This is how one would implement the retrieval of the sequence using
GenBank ID and NCBI web application using regular expressions to parse
out the sequence. To implement the retrieval of sequences from GenBank
by GI numbers we create a package called org. jfb.util.GenbankOB.

The GenbankDB class implements a method called getsequence() to
retrieve sequences from GenBank through requests sent to the following
URL (as defined in the String constant GENBANK_URL):

"http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?dopt=fastas
list_uids=";

Since the GenBank Id is a number is a numeral, the method performs
checks if the user entered GI number is a valid entry. The getsequence ()
method takes a single parameter - the GenBank ID - opens a connection to
the URL, obtains the data from GenBank, and performs the necessary
parsing, formatting and trimming to get the actual GenBank sequence. To
retrieve the CFTR sequence from GenBank using its GI number (6995995,
replaced by 90421312), for example, the URL we would use in a browser
would be: «<here

h t tp : / /www.ncb i .n lm.n ih .gov /en t rez /v iewer . f cg i?dop t=fas t a s1
ist_uids=6995995

This opens up the GenBank page with the sequence displayed in Fasta
format (Fig. 3.17). This record needs to be parsed to extract the raw
sequence from the HTML formatting on the page. This is easily done since
the sequence is bounded by the <pre> and </pre> starting and ending tags.
Fig. 3.18 shows the source HTML of the page with beginning <pre> tag
just before the Fasta formatted sequence starts.

130

•Z hapiif','ivivi,ncbi.n\m,nh,Q0'/ieritre7i'-,'\e\ r,fi:gr''dopt=ta5!:a iil!5!:_uid5=6 ? ?5<i95

Display i

Mnge: frori
~ 1 : 1 : i .

F«i;TA

beg,,,

.4f':j .-• 95}

iiTTiSGAiGiraasTijAiriLTiraciGfraijiiTirAG-iiJiiAAAAfJGi^TrGjLGCiJGirAGGfrAiriiirAGiG-TAi^Tifii;
TCTTTGGCiTTAGGAG<:TTGAG':CCAGACGGCCCTAGp:AGGGACCCCiLGCGCCCGiGA GAC CATGCAGAG
GTCGCCTCTGGAAAAC-GCCAGCGTTGTCTCCJLAACTTTTTTTCAGCTGGACCAGACCAATTTTGAGGAAA

CTGAAAAATTGGAAAGAGAATGGGATAGAGAGCTGGCTTCAAAGAAAAATCCTIAACTCATTAITGCCCT
TCGGCGATGTTTTTTCTGGAGATTTATGTTCTATGGAATCTTTTTATATTTAGGGGAAGTCAGCAAAGCA
GTACflG';CTCTCTTACTtJGGAAGAATCATAGCTTgCTATGACCCGGAT;iilCAAGGAGGAACGCTCTATqG
CGATTTATi^TAGGCATAGGCTTATGCCTTCTCTTTATTGTGAGGACACTGCTCCTACACCCAGCCATTTT
TGGCCTTCATCACATTGGAATGCAGATGAGAATAGCTATGTTTAGTTTGATTTATAAGAAGACTTTAAAG

GCTAATCTGGGAGTTGTTSCAGGCGTCTGCCTTCTGTGGAGTTGGTTTCCTGATAGTCCTTGCCCTTTTT
CAGGCTGGGCTAGGGAGAATGATGATGAAGTACAGAGATCAGAGAGCTGGGAAGATCAGTGAAAGACTTG
TGATTACCTCAGAAATGATTGAAAATATCGAATCTGTTAAGGCATACTGCTGGGAAGAAGCAATGGAAAA
AATGATTGAAAACTTAAGACAAiClGAACTGiiACTGACTCGGAAGGCaGGCTlTGTGAGATAGTTGAlT
AGCTCAGCiTTTCTTCTTCTCAGGGTTCTTTGTGGTGTTTTTATCTGTGCTTCCCTATGCACTAATCAAAG
GAATCATGGTCCGGAAAATATTGACCACCATCTCATTGTGCATTGTTCTGGGCATGGCGGTCACTCGGCA

AAGCAAGAATATAAGACATTGGAATATAACTTAACGACTACAGAAGTAGTGATGGAGA ATGTAAC AGC C T

TCTGGGAGGAGGGATTTGGG GAATTATTTGAGAAAGC AAAFTCAAAACAATAACAATAGAAAAACTTCTAA

TGGTIGAT'GACAGI:I:TCTTI:TTCAGTAATTTCTCAI:TT':TTIGGTA':TGI;TGTCCTGAAAIGATATTAATTTC

Fig, 3.17. GenBank record for the CFTR mRNA sequence

iS lS^^H^^S ^^^^^^^^^J^P^^^P^g^^^gp^^J^^^^^^g^
File Edit View

^ript>
s:pTJpMenu2 onMouseOnt= <a c l a s s = "'dblink:3"^ href="ja^'•ascE

</ t r>
</taljXe>
•;/iEorm><iJre>^gi| 6995995] L-ef |NM_000492 .2 I Homo s a p i e n s c y s t i c f i b r o s i s transrnerritara
AATTGGAAGCAAATGACATCACAGCAGGTCAGAG-AAAAAGGGTTGJIGCGGCAGGCACCCAGAGTAGTAC-G
TCTTTGGCATTIGGAG-CTTGAGCCCAGACGGCCCTAGCAGGGACCCCAGCGCCCGAGAGLCCATGCAGACT
GTCGCCTCTGGAAAAGGGCAGCGTTGTCTCCAAACTTTTTTTCAGCTGGACCAGACCAATTTTGAGGAAA
GGATACAGACAGCGCCTGGAATTGTCAGACATATACCAAATCCCTTCTGTTGATTCTGCTGACAATCTAT
CTGAAAAATTGGAAAGAGAATGGGATAGAGAGCTGGCTTCAAAGAAAAATCCTAAACTCATTAATGCCCT
TCGGC GATGTTTTTTC TGGAGATTTATGTTCTATGGAATC TTTTTATATTTAGGGGAAGTC AGC AAAGC A
GTACAGCCTCTCTTACTGGGAAGAATCATAGCTTCGTATGACCCGGATAACAAGGAGGAACGCTCTATCG
CGATTTATCTAGGCATAGGCTTATGCCTTCTCTTTATTGTGAGGACACTGCTCCTACACCCAGCCATTTT
TGGCCTTCATCACATTGGAATGCAGATGAGAATAGCTATGTTTAGTTTGATTTATAAGAAGACTTTAAAG
CTGTC AAGCC GTGTTC TAGATAAAATAAGTATTGGAC AAC TTGTTAGTCTCC TTTC C AAC AACC TGAAC A
AATTTGATGAAGGACTTGCATTGGCACATTTCGTGTGGATCGCTCGTTTGCAAGTGGCACTCCTCATGGG
GCTAATCTGGGAGTTGTTACAGGCGTCTGCCTTCTGTGGACTTGGTTTCCTGATAGTCCTTGCCCTTTTT
C AGGC TGGGC TAGGGAGAATGATGATGAAGTAC AGAGATC AGAGAGCTGGGAAGATC AGTGAAAGACTTG
TGATTACCTCAGAAATGATTGAAAATATCCAATCTGTTAAGGCATACTGCTGGGAAGAAGCAATGGAAAA
AATGATTGAAAACTTAAGACAAACAGAACTGJLAACTGACTCGGAAGG<:AGCCTATGTGAGATACTTCAAT
AGCTCAGCCTTCTTCTTCTCAGGGTTCTTTGTGGTGTTTTTATCTGTGCTTCCCTATGCACTAATCAAAG
GAATCATCCTCCGGAAAATATTCACCACCATCTCATTCTGCATTGTTCTGGGCATGGCGGTCACTCGGCA
ATTTCCCTGGGCTGTACAAACATGGTATGACTCTCTTGGAGCAATAAACAAAATACAGGATTTCTTACAA
AAGCAAGAATATAAGACATTGGAATATAACTTAACGACTACAGAAGTAGTGATGGAGAATGTAACAGCCT
TCTGGGAGGAGGGATTTGGGGAATTATTTGAGAAAGCAAAACAAAACAATAACAATAGAAAAACTTCTAA
TGGTGATGAC AGC CTC TTCTTC AGTAATTTCTC ACTTG TTGGTAC TCC TGTC CTGAAAGATATTAATTTC
AAGATAGAAAGAGGACAGTTGTTI^GGGGTTGCTGGATCCACTGGAGCAGGCAAGACTTCACTTCTAATGA
TGATTATGGGAGAACTGGAGCCTTCAGAGGGTAAAATTAAGCACAGTGGAA'^AATTTCATTCTGTTCTCA

GTTTTrrTGGiTTaTGrrTGi-rr arraTTaa IGB aa iTaTi" DTrTTTGGTGTTTrrTDTG!iTr-a bTDTBGa

Fig. 3.18. Parsing the raw sequence data from a GenBank record

Running BLAST using SwingBlast 131

The code for the GenbankOB class is described in Listing 3.9.

Listing 3.9. The GenbankDB class

package org.jfb.util;
import org.apache.regexp.RE;
import org.apache.regexp.RESyntaxException;
import Java.io.BufferedReader;
import java.io.IOException;
import Java.io.InputStreamReader;
import Java.net.URL;

public class GenbankDB {
private static final String GENBANK_URL

"http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?dopt=fasta&li
st_uids=";

public static String getSequence(String gbid) throws
lOException, IllegalArgumentException {

//A GenBank ID is always a number
boolean isGenBankID = isGenBankld(gbld);
String genBankId = gbld.replaceAll("\n", " ") ;

if (!isGenBankID)
throw new IllegalArgumentException(genBankId +

" is not a valid GenBank ID");

BufferedReader reader = null;
StringBuffer sb;

try {
URL url = new URL(GENBANK_URL + genBankId);
reader = new BufferedReader(new

InputStreamReader(url.openConnection().getlnputstream()));
String s;
sb = new StringBuffer();
while ((s = reader.readLine()) != null) {

sb.append(s + "\n");
}

} finally {
if (reader != null)

reader.close();
}

String tmp = sb.toString().toLowerCase();
int idx = tmp.indexOf("<pre>");
int endldx = tmp.indexOf("</pre>");

if (idx == -1 II endldx == -1)
return null;

132

return sb. substring(idx + "<pre>".length() ,
endldx);

}

private static final int CUT_OFF = 30;

public static boolean isGenBankId(String gbid) {
RE re = null;
try {

re = new RE("([0-9])+");
} catch (RESyntaxException el) {

}

boolean valid = true;
String cleanSeq = gbId.replaceAll("\n", " ") ;
int len = cleanSeq.length();
final int min = Math.min(CUT_OFF, len);
String seqPiece = cleanSeq.substring(0, min);

re.match(seqPiece);
String match = re.getParen(0);
valid = match != null &&

match.equals(seqPiece);
return valid && min == len;

}
}

Input Validation

Note that there is no input validation in SwingBiast 2.2. swingBiast
2.2 does not flag an error when bad characters are present in the sequence
entered in the text area. Fig. 3.19 shows the application behavior when an
amino acid ("D") is inserted in what is apparently a nucleotide sequence.
The sequence type is deduced as "N/A" because the application cannot
determine the sequence type (Listing 3.7). For the same reason, none of the
BLAST options are available. With the appropriate input validation, the
application can catch errors in the entered sequence type and warn the user
to make the appropriate changes.

Running BLAST using SwingBlast 133

Swinrininsr ilnlp

.^Scq-.T:r.ccii:i:ill3 y.'k

yv\w-:- r / i

Seiiiieiice

PrnMr'iiii

Ddtdlidbu

F vabip.

hJiriMt Suquuiiuu

Ciear Suhniit

Fig. 3.19. Handling bad characters in input sequence

We will incorporate input validation for a few simple situations as
described below:

1. The sequence contains bad characters, that is, characters other than
the single letter codes for nucleotides and amino acids. We had
illustrated how we used information on the composition of
sequences found in nature to determine sequence type in Chapter 2.
According to this algorithm, if:

a. Total number of A, T, G and C's divided by the total length
of the sequence is greater that 0.85, it is a DNA sequence

b. Total number of A, T, G, C and U's divided by the total
length of the sequence is greater that 0.85, it is an RNA
sequence

If neither of these two conditions are met, the sequence is assumed to be
a protein sequence. Again, we are not using the extended DNA/RNA
alphabet that includes symbols for sequence ambiguity as defined in the

134

lUPAC-IUB nucleotide and amino acid nomenclature. Instead, we are
illustrating input validation for the simplest of cases where the DNA
alphabet is assumed to be composed of A, T, G, C and N and RNA is
assumed to be A, U, G, C, N (where N = any nucleotide base) and amino
acid alphabet is assumed to be A, C, D, E, F, G, H, I, K, L, M, N, P, Q, R,
S, T, V, W and Y.

Once we have determined the sequence to be DNA, RNA or protein, we
check if any bad characters are present-in the sequence and warn the user
accordingly. We also check if a number instead of a sequence has been
entered in the text area. This may very well be a GI number. If it is indeed
a GI number, the application will download the corresponding sequence
from GenBank when the user presses the "Format sequence" button. If
none of the above conditions are met, the application will print an error
message asking the user to check the validity of the sequence or data
entered. To add input validation to the SwingBlast application, we add a
method called isvalidsequence(). The method takes the input sequence
as the parameter and performs the appropriate checks as described earlier
using regular expressions:

private static boolean isValidSequence(String seq) {
int idx = seq.indexOf(">");
int idxEndOfFastaHeader = seq.indexOf("\n");
String sequenceToCheck = null;
if (idx != -1) {

sequenceToCheck = seq.substring(idxEndOfFastaHeader +
1, seq.length());

} else {
sequenceToCheck = seq;

}
r e t u r n matchRegex(REGEX_DNA, sequenceToCheck)

I I inatchRegex(REGEX_RNA, sequenceToCheck)
I I inatchRegex(REGEX_PROTEIN, sequenceToCheck)
II matchRegex(REGEX_GENBANK_ID, s equenceToCheck) ;

}

The regular expression matching within inatchRegex() method checks
for the following valid patterns:

private static final String REGEX_DNA = "[acgtnACTGN]+";
private static final String REGEX_RNA = "[acgunACUGN]+";
private static final String REGEX_PR0TEIN

"[acdefghiklmnpqrstvwyACDEFGHIKLMNPQRSTVWY]+";
private static final String REGEX_GENBANK_ID = "[0-9]+";

The matchRegex() method itself is as follows:

Running BLAST using SwingBlast 135

private static boolean matchRegex(String regex, String
sequence) {

RE re = null;
try {

re = new RE(regex);
} catch (RESyntaxException res) {
// The regex has been tested so no need to chech the
// exception here

}

String cleanSeq = sequence.replaceAll("\n", " ") ;
boolean valid = true;
int len = cleanSeq.length();
int pvsldx = 0, nextldx;
for (int i = 0; i < len; i += CUT_OFF) {
nextldx = Math.min(i + CUT_OFF, len);
String seqPiece = cleanSeq.substring(pvsldx,

nextldx);
re.match(seqPiece);
String match = re.getParen(0);
valid = match != null && match.equals(seqPiece);

if (Ivalid)
break;

pvsldx = nextldx;
}
return valid;

}

Next we call the isValidSequence() method in the
actionPerformed() event method:

public void actionPerformed(ActionEvent e) {
// Check sequence type
// Retrieve text entered in the text area
final String sequenceText = sequenceArea.getText();
if (sequenceText == null || sequenceText.length()

0) {
cleanAllParameters();
return;

}

if (lisValidSequence(sequenceText)) {
JOptionPane.showMessageDialog(SwingBlast2_2.this,

"The sequence you've entered is neither a DNA
or protein sequence nor a FASTA formatted sequence.\n" +

"Please provide a valid sequence.");
return;

}

136

The application is now able to detect errors in the entered sequence and
warn the user with the appropriate message (Fig. 3.20).

Swiri!:]BlJst H»l|]

JTGCATI-riT&CJ

We found that the sequence is type DNA hy alyorithm. but it contains some characters from sequence of type Pr •!• -in

PlRfisR nnrrcct the SRquencR ynu RiiterRd!

rnrmm SRquRnrp

Program

DatahrisR

L-vahie

Clear Suhmit

Fig. 3.20, SwingBlast 2.2 with input validation

Fig. 3.21 shows that the application recognizes that just a Fasta header
has been provided and results in an error.

SwiiiyBI<ist Blast Hel|)

:-fcyyotyi

ThHSHquKriKKyiiuVKHnlKiHilisriKilliHi <iDNA iii r<iiilHirisKquKiii:Hiini i i FASTA roirnallHiJsHquKnrH.

Please provide a valid seciiience.

I ormat Sequence

Program

Database

Lvalue

Status: Ready

Clear Submrt

Fig, 3.21. Input validation for wrong Gl number format

Running BLAST using SwingBlast 137

The application, however, does retrieve the correct sequence
information from GenBank if a GI number is provided.

Controlling Program Events and Responses

We will next incorporate some program flow features in swingBiast
2.2. We will program the "Format Sequence" button to be enabled only
when a non-Fasta formatted sequence is entered in the text area. The
format button will be disabled when the application starts and also under
the following conditions:

1. When no sequence is available in the text area

2. If the sequence is already in Fasta format (at the time of
pasting or right after the sequence is Fasta formatted)

3. When the "clear" button is pressed

4. When the "Format Sequence" button is pressed

Let's enhance our application with these features in mind. We will call
this SwingBlast Version 2.3. The code to enable or disable the "Format
Sequence" button to meet condition #1 stated above is straight forward as
shown in the Listing 3.10 below. We implement a document listener
interface and associate it with the text area widget. Within the document
listener, we implement the i n s e r t U p d a t e () and removeUpdate()
methods to respond to events that either insert or modify text within the
text area. Fig. 3.22 shows the SwingBlast 2.3 application with the format
button disabled at launch.

Listing 3.10. Enabling and disabling the Format button

private void addListeners() {
docListener = new DocumentListener() {
public void insertUpdate(DocumentEvent e) {
String text = sequenceArea.getText();
if (text == null || text.length() == 0) {
enableFunctions(-1);
formatBtn.setEnabled(false);

} else
formatBtn.setEnabled(true) ;

}

138

public void removeUpdate(DocuinentEvent e) {
String text = sequenceArea.getText();
if (text == null || text.length() == 0) {

enableFunctions(-1);
formatBtn.setEnabled(false);

}
}

public void changedUpdate(DocumentEvent e) {
}

};

sequenceArea.getDocument().addDocumentListener(docListener);

Similarly, to meet condition 2, we include the following code:

final boolean fastaFormatted = sequenceText.indexOf(">") !=
-1;

formatBtn.setEnabled(!fastaFormatted);

For condition 3, the code is as follows:

clearBtn.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

cleanAllParameters();
}

}) ;
The cleanAllParametersO method will empty the sequenceArea and by

doing this the document listener shown ealier will disable the
formatButton as shown below:

private void cleanAllParameters() {
sequenceArea.setText("");
enableFunctions(-1);

}

Finally, to meet condition 4, when the button is pressed, the action

listener is actually disabling the format button:

formatBtn.addActionListener(new Act ionLis tener () {
publ ic void actionPerformed(ActionEvent e) {

fo rmatBtn . se tEnab led(fa l se) ;

Running BLAST using SwingBlast 139

}) ;

swinijri^iKi nii'isi I iFiip

Seiuierii;*)

MliHJIuliI

Uatatiase

L-valiie

Clear Submit

Status: Kcatlv

Fig. 3.22. Format button is disabled at start-up

Reporting BLAST Status

SwingBlast allows users to send sequences for multiple simultaneously
BLAST analyses. It would be very informative to the user if the
application were to provide a status of the current job that it is performing.
In the next version of the application, we will add a program status bar to
do so. With the program status code in place, the application will provide
the user a running status of the jobs in process. Note that these messages
will be relayed directly from the QBlast service and printed on the status
bar using the observable method discussed earlier. The SwingBlast 2.3
application starts with the "status: Ready" message at the bottom left of
the application window as shown in Fig. 3.23. Fig. 3.24 shows the status

140

while the application is retrieving a sequence from GenBank based on a GI
number. Fig. 3.25 and Fig. 3.26 show the status immediately after
submitting a BLAST search and an intermediate stage before getting the
results back. After all searches are complete, the system returns to the
"Ready" Status.

SvuingBlast Blast Result Help

Sequence

Program

Database

E-value

Clear Submit

Status: Really

Fig. 3.23. Printing BLAST search status at start-up

Running BLAST using SwingBlast 141

'iwni.|IM.i*ii l:l'iKII<i"iiili lii'lti

SULIUl'IILt.'

Formal Sequence

Minfii/iiii

I.MI.lh.lSI'

I V'lilll!

SI.mis: I'i'tiii-tfiii'i sequence for GenBank ID 6995995

Clear Submit

Fig. 3.24. SwingBlast status during sequence retrieval from GenBank

•sirjiinini.isi

SuqueiiCL'

^ lu i i id in

n.T-ili;i';p

1 V.lllllf

ni.isi ni'siili l|i>l|i

1 1 • 1 . 1 1

, 1 , 1 • ' ' ; : i 1

, 1 • T • . • • • : : i , <

. • • • . • 1 1 • • • • • . • • • .

; . 1 • • • ! • • • . . . • • •

• 1 • • • • • • • • 1 , 1

. 1 . 1 . • • . . 1 1

: . • 1 1 • • . . 1 •

. 1 . 1 • 1

•• UI<i<>tN UldbtX lUldStX

nr •»

i i . i i in •»

SI.nils: si ihi i i i t i i i i i i ihf lull I I I ihpsi-ivf!i tj i i l i i|iii-ivi'Mli

• 1 ^

• T J

. '1

-

I'Ai-ai Suliniii

' l l lKOII I I tY III I I I VI III M I N I . . .

Fig. 3.25. BLAST search status at the time of submission

142

SwinyBlast Blast Result Help
AHjLrlL'LrlikUji 1 i lLAL'L'LlAlj i lUjl i l iLrlJkLllLAlLrLUjlLlALilLl

AAGAGAC-AATGAC.AGACACACTGAAGAAGCACCAATCATGAATTAGTTTT

ATATGCTTCTGTTTTATAATTTTGTGAAGCAAAATTTTTTCTCTAC-GAAA

TATTTATTTTAATAATGTTTCAAACATATATTACAATGCTGTATTTTAAA

AGAATGATTATGAATTACATTTGTATAAAATAATTTTTATATTTGAAATA

TTGACTTTTTATGGCACTAGTATTTTTATC-AAATATTATGTTAAAACTGG

S e q u e n c e (JACAGGC-GAGAACCTACTGGTGATATTAACCAGGGGCCATGAATCACCTTT

TGGTCTGGAGGGAAGCCTTGGGGCTGATCGAGTTGTTGCCCACAGCTGTA

TGATTCC CAGC CAGACACAGC CTCTTAGATGCAGTTCTGAAGAAGATGGT

AC CAC CAGTCTGACTGTTTC CATCAAG GGTACACTGC CTTCTC AACTC C A

AACTGACTCTTAAGAAGACTGCATTATATTTATTACTGTAAGAAAATATC

ACTTGTCAATAAAATCCATACATTTGTGT

Program r" BlastN BlastX TBIastX

Database nr "^

E-value 0.001 "̂

Clear Submit

Status: Time left 9s before requesting tlie result

Fig . 3 .26. Print ing B L A S T search status before gett ing results

The code for adding BLAST search status is as follows. First, we add a
status label at the bottom left side of the application:

statusLabel = new JLabel(STATUS_LABEL);
statusLabel.setPreferredSize(new Dimension(50, 30));
statusText = new JLabel(STATUS_READY);
JPanel statusPanel = new JPanel();

statusPanel.setBorder(BorderFactory.createEmptyBorder(0,
5, 5));

StatusPanel.setLayout(new BorderLayout());
StatusPanel.add(StatusLabel, BorderLayout.WEST);
StatusPanel.add(statusText, BorderLayout.CENTER);

5,

newContentPane.add(StatusPanel, BorderLayout.SOUTH);

If a GI number has been entered in the sequence area, the application
gets the corresponding sequence from GenBank and displays the

Running BLAST using SwingBlast 143

appropriate status message as shown in Fig. 3.24. The code for
implementing this is shown below:

if (isGenBankID) {
boolean canGetSeq = true;
final String statusText = "Retrieving sequence for

GenBank ID " + sequenceText;
try {

SwingUtilities.invokeAndWait(new Runnable() {
public void run() {

SwingBlast2_3.this.statusText.setText(statusText);
}

});
seqObject = genbankSequenceDB.getSequence(text);

} catch (Exception e) {
e.printStackTrace();

}
sequence = seqObject.seqString();

SwingUtilities.invokeAndWait(new Runnable() {
public void run() {

resetStatusText();
}

});
} catch (IllegalArgumentException iae) {

// ignore because we checked already!
} catch (Exception e) {
canGetSeq = false;

}
if (seq == null || seq.length() == 0 || IcanGetSeq) {

JOptionPane.showMessageDialog(SwingBlast2_3.this,
"Cannot get the sequence for GenBank ID " +

sequenceText);
return;

}

Displaying BLAST Results Interactively

Finally, we will enhance the display capabilities of SwingBlast so we
can view the results of the BLAST in a graphical and interactive manner.
We will call this SwingBlast Version 2.4. The application will appear as
shown in Fig. 3.27.

144

SwingBlast Blast Re<-iili lli'lii

Open...

Sequence

Program

Database

E value

Clear Submit

Status: Heady

Fig. 3.27. Displaying BLAST results interactively

As seen in the Fig. 3.27, the user will select the Blast -^ Open menu
button to access saved BLAST results. This will open a new window that
will display the results in an interactive format. The data displayed in the
graphical view is obtained by parsing information from the XML output
shown in Fig. 3.28. The data parsed from the XML file includes such fields
as the Hit_id, Hit_definition, Hit_accession, Hit_len, Hit_hsps,
Hsp_number, Hsp_bit-score, Hsp_score, Hsp_evalue, etc. These fields
describe the various attributes of a High Scoring Sequence Pair (HSP),
such as the id, the definition, the GenBank accession number, the length,
score, E-value etc. An HSP is a pair of aligned sequences of arbitrary but
equal length, one derived from the query (input) sequence and one derived
from the database it was searched against, that was returned by the BLAST
search. The HSPs represent sequences whose alignment is locally
maximal and for which the alignment score meets or exceeds a threshold
or cutoff score provide by the user.

Running BLAST using SwingBlast 145

Ha I File Edit Format Vjew Help

<?>:m1 ^^ers ion-" l .Q" '^><!DOCTYPE B l a s t o u t p u t PUBLIC " - / / N C B I / / N C B I B l a s t o u t p u t / E N "
" N C B l _ B l a s t u u t p u t . d t d " > < B l a s t O u t p u t > ' ;B las tOu tpu t_p rog ram; -b las tn - : /B la5 tOu tpu t_p rog ra iT i : -
<B" las tOu tpu t_vers ion : -b " la5 tn 2. 2 .10 [Oct -19-2004J-^ /B I a s t O u t p L i t _ v e r s i o n >
< B l a s t O u t p u t _ r e f e r e n c e > - R e f e r e n c e : A l t s c h u l , Stephen F . , Tnomas L. Madden, A l e j a n d r o A.
S c h a f f e r , - J i n g h u i Zhang, Zheng Zhang, Webb M i l l e r , and Dav id 3. Lipman (1997^^
-&quo t ;Gapped BLA5T and P S I - B L A S T : a new g e n e r a t i o n o f p r o t e i n da tabase
search--programsdfquot ; , N u c l e i c A c i d s Res. 25 :3389-3402 . < / B l a s t O u t p u t _ r e f erence>
<B'! a s t o u t p u t _ d b > n r < / B l a s t o u t p u t _ d b > <Bl a s t o u t p u T _ q u e r y -
l D > l c l | l _ 3 2 2 9 7 < / B l a s t O u t p u t _ q u e r y - l D > <B" !as tO iJ tpu t_que ry -de f>bp< /B" !as tOu tpu t_que ry -de f>
< B l a s t o u t p u t _ q u e r y - 1 e n > 4 2 0 < / B l a s t o u t p u t _ q u e r y - l e n > <BlasxOLitput_parani> <Parameters>

<Para rne te rs_expec t>0 .001< /Pa rame te rs_expec t> <Paramete rs_sc -
ma tch> l< /Pa rame te rs_sc -n i a t ch> <Parame te rs_sc -m isma tch> -3< /Pa rame te rs_sc -m isma tch>

- ;Parameters_gap-open>5</Parameters_gap-open> <Paramete rs_gap-
ex tend>2< /Pa rame te rs_gap -ex tend> < /Paramete rs> < /B las tOu tpu t_pa ram>
< B " i a s t O u t p u t _ i t e r a t i o n s > < l t e r a t i o n > < l t e r a t i o n _ i t e r - n u n i > l < / l t e r a t i o n _ i t e r - n u i T i >

< l t e r a t i o n _ h i t s > < l i i t > <H i t_num> l< /H i t_num>
< H i t _ i d > g i |69i555Si5|ref |NM_0Ci0492. 2 I < / H i t _ i d > <Hit_def>Homo sap iens c y s t i c
f i b r o s i s t ransmembrane conduc tance r e g u l a t o r , A T P - b i n d i n g c a s s e t t e C s u b - f a m i l y C, member
7") (CFTRJ, mRl'JA</Hit_def> <Hnt_access ion>NM_000452</H i t_access ion>
<H i t _ l en>612 9 i</Hi t_1en> <H i t_hsps> <Hsp>
<Hsp_num>l-:/Hsp_num> < H s p _ b i t - s c o r e > S 3 3 . 0 S 2 < / H s p _ b i t - s c o r e >
<Hsp_score>420</Hsp_score> <Hsp_eva1ue>0</Hsp_evalue>
<Hsp_query - f rom> l - ; /Hsp_query - f rom> ' :Hsp_query - to>42Ci< /Hsp_query - to>

< H s p _ n i t - f r o m > l < / H s p _ h i t - f r o m > < H s p _ h i t - t o > 4 2 0 < / H s p _ h i t - t o >
<Hsp_query - f r a m e > l < / H s p _ q u e r y - f raiTie> | < H s p _ h i t - f r a m e > l < / H s p _ h i t - f rame>

< M s p _ i d e n t i t y > 4 2 0 < / H s p _ i d e n t i t y > < n s p _ p o s i t i v e > 4 2 0 < / H s p _ p o s i t i v e >
<Hsp_a l ign -1en>420< /Msp_a1 ign -1en>

<LISP_QSEQ>AATTGGAAGCAAATGACATCACAGCAGGTCAGAGAAAAAGGGTTGAGCGGCAGGCACCCAGAGTAGTAGGTCTTTGGCA
TTAGGAGCTTGAGCCCAGACGGCCCTAGCAGGGACCCCAGCGCCCGAGAGACCATGCAGAGGTCGCCTCTGGAAAFL.GGCCAGCGTTGTC
TCCAAACTTTTTTTCAGCTGGACCAGACCAATTTTGAGGAAAGGATACAGACAGCGCCTGGAATTGTCAGACATATACCAAA.TCCCTT' :

|TGTTGATTCTGCTGACAATCTATCTGAAAAATTGGAAAGAGAA.TGGGATAGAGAGCTGGCTTCAAAGAAAAATCCTAAACTCATTAATG
| C C C T T C G G C G A T G T T T T T T C T G G A G A T T T A T G T T C T A T G G A A T C T T T T T A T A T T T A G G G G A A G T C A C C A A A G C A < / H S P _ Q S E Q >

I < H S P_HS EQ>AATTGGAAGCAAATGACATCACAGCAGGTCAGAGAAAAAGGGTTGAGCGGCAGGCACCCAGAGTAGTAGGTCTTTGGCA
ITTAGGAGCTTGAGCCCAGACGGCCCTAGCAGGGACCCCAGCGCCCGAGAGACCATGCAGAGGTCGCCTCTGGAAAAGGCCAGCGTTGTII
ITCCAAACTTTTTTTCAGCTGGACCAGACCAATTTTGAGGAAAGGATACAGACAGCGCCTGGAATTGTCAGACATATACCAAATCCCTT ' I

Fig. 3.28. XML file containing BLAST results data

BLAST results displayed in an interactive format are shown in Fig. 3.29.

Fig. 3.29. Displaying BLAST results in an interactive format

Clicking on the GI number opens the GenBank record (Fig. 3.30).

146

: File Edit View '^ Bool-marks Tools Help

' :'""";.- •"'f i i ' ^ hil:i:p;//www.ricbi,rilm.riili.gciv/errtrez/viewer,l^cgi^dopt=l^a5i:a& '

cleotide

P.ing^ fr^m I -

:.f. I [rŜ î-;

.-gil 09959951 ref|NTT_00049^ .2 I Homo sapiens cystic fibrosis transnieirfcrane conducta
AATTGGAAGCAAATGACATCACAGCAGGTCAGAGAAAAJLGGGTTGAGCGGCAGGCACCCAGAGTAGTAGG

TCTTTGGCATTAGGAGCTTGAGCCCAGACGGCCCTAGCAGGGACCCCAGCGCCCGAGAGACCATGCAGAG
GTGGGGTGTGGAAAAGGCCAGCGTTGTCTCCAAACTTTTTTTCAGCTGGACCAGACCAATTTTGAGGAAA
GGATACAGACAGCGCCTGGAATTGTCAGACATATACCAAATCCCTTCTGTTGATTCTGCTGACAATCTAT
CTiGAAAAATTGGAAAGAGAATGGGATAGAGAGCTGGCTTCAAAGAAAAATCCTAAACTGATTAATGCCCT
TCGGGGATGTTTTTTCTGGAGATTTATGTTCTATGGAATCTTTTTATATTTAGGGGAAGTCACCAAAGCA
GTACAGCGTCTCTTACTGGGAAGA.ATCATAGCTTCCTATGACCCGGATA_AXAAGGAGGAACGCTCTATCG
CGATTTATCTAGGCATAGGCTTATGGCTTCTCTTTATTGTGAGGACACTGCTCGTACACCGAGCCATTTT
TGGCGTTCATCACATTGGAATGCAGATGAGAATAGCTATGTTTAGTTTGATTTATAAGAAGACTTTAAAG

Fig. 3.30. Accessing GenBank record from BLAST results

Let's add the code that displays the BLAST results interactively. First,
we add a menu item "BLAST Result" in the menu bar:

JMenu blastMenu = new JMenu("Blast Result");
openltem = new JMenuItem("Open...");
blastMenu.add(openltem);
menu.add(blastMenu);

Next we create a method called displayBlastResult() that takes a file

name containing the B L A S T results (that we saved earlier) as a parameter.

The code is shown below:

private void displayBlastResult(final String
blastFileName) {

final JDialog blastDialog = new JDialog(this, "BLAST
Result for file " + blastFileName, false);

final JTextArea textArea = new JTextArea();
final Font sf = textArea.getFont();
Font f = new Font("Monospaced", sf.getStyle(),

sf.getSize());
textArea.setFont(f);

Runnable runnable = new Runnable() {
public void run() {

Running BLAST using SwingBlast 147

Collection blastHits =
extractBlastHits(blastFileName);

final String text = createReport(blastHits, new
ColorFormatterDNA());

SwingUtilities.invokeLater(new Runnable() {
public void run() {

textArea.setText(text);
}

});
}

};
new Thread(runnable).start();
textArea.setLineWrap(true);
final JMenuBar menuBar = new JMenuBar();
JMenu menu = new JMenu("Blast Result");
blastDialog.setJMenuBar(menuBar);
JMenuItem openltem = new JMenuItem("Open...");
openltem.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

final String blastResult = getBlastFileFromUser();
if (blastResult != null)
displayBlastResult(blastResult);

}
});
menu.add(openltem);
JMenuItem menultem = new JMenuItem("Close");
menuItem.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {
closeMenu(blastDialog);

}
});
menu.add(menultem);
menuBar.add(menu);
blastDialog.addWindowListener(new WindowAdapter() {
public void windowClosing(WindowEvent e) {

closeMenu(blastDialog);
}

});
blastDialog.getContentPane().add(new

JScrollPane(textArea));
blastDialog.setSize(CP_PREF_SIZE);
centerLocation(blastDialog);
blastDialog.setvisible(true);

}

Next we add a method to create the report called createReport ()
which takes the Collection object and a color formatter object called
ColorFormatter:

p r i v a t e S t r ing c rea t eRepor t (Co l l ec t ion b l a s t H i t s ,
ColorFormatter colorFormat ter) {

Str ingBuffer summary = new

148

StringBuffer("<html><body style=\"font-family: 'Monospaced',
Courier\">" +

"Input Sequence Name: " + inputSeqName +
"\n");

StringBuffer alignments = null;
if (blastHits == null || blastHits.size() == 0) {

summary.append("No hits found from BLAST");
} else {

summary.append("Summary of hits (Scroll down to
view alignments)\n" +

\n");
BlastHit hit;
BlastHsp hsp;
Iterator iterator = blastHits.iterator();
alignments = new StringBuffer("\nAlignments\n"

+
" \n");

int i = 1;
while (iterator.hasNext()) {

hit = (BlastHit) iterator.next();
String hitid = hit.getHitId();
String genbankid = getGenBankld(hitld);
StringBuffer tmp = new StringBuffer("" +

i++)
.append(". gi|<a

href=\"http://www.ncbi.nlm.nih.gov/entrez/viewer.fcgi?dopt=fa
sta&list_uids=" + genbankid +
"\">").append(genbankid).append(" length:
").append(hit.getHitLen())

.append("\n");
summary.append(tmp);
alignments.append(tmp);
Iterator hsplte = hit.getHsps().iterator();
while (hspIte.hasNext()) {

hsp = (BlastHsp) hsplte.next();
alignments.append("Score =

").append(hsp.getBitScore()).append(" bits E-Value: ")

.append(hsp.getEvalue()).append("\n\n");
int queryFrom =

Integer.parseint(hsp.getQueryStart());
int queryTo =

Integer.parseint(hsp.getQueryEnd());
int subjectFrom =

Integer.parseint(hsp.getSubjectStart());
int subjecTo =

Integer.parseint(hsp.getSubjectEnd());
appendSequences(alignments,

hsp.getQseq(), hsp.getMidline(), hsp.getHseq(),
NUMB_OF_CHAR_PER_LINE,

queryFrom, queryTo,
subjectFrom, subjecTo, queryFrom < queryTo, subjectFrom <

Running BLAST using SwingBlast 149

subjecTo, colorFormatter);
alignments.append("\n");

}
alignments.append("\n");

}
summary.append(alignments);

}
r e tu rn

summary.append("</body></html>") . toSt r ing() . replaceAl l (" \n" ,
"
");

}

The color formatter that adds colors to the DNA alignment is as follows:

private class ColorFormatter implements ColorFormatter {
public String format(String s) {

String upperCaseSeq = s.toUpperCase();
String color;
String letter;
for (int i = 0; i < letters.length; i++) {
letter = letters[i];
color = letterToColor.get(letter);
upperCaseSeq = upperCaseSeq.replaceAll(letter,

"" + letter + "");

}
return upperCaseSeq;

}
}

The output of the program, which we call SwingBlast 2.5, is shown in

Fig. 3.31-3.32. Fig. 3.1 shows a high scoring alignment with a top hit (no

gaps) and Fig. 3.32 shows alignment with a sequence with a lower score

(with gaps).

150

S«irgBi«5t Basttesull Help
>i:i. fefl!*33?5 r e t HM_GCC«5^.2 iic-ir.o s e p i o r i s c f s L i c l i b r a s i s Lrar*sir.cAL-ra:ie

G:CGCe"CTGGJiftAAGccCAGCGr"CTC:c«-imcr?T"rTrGXOcrGCACGAGACGA/vr'::'rCAGc/jtfi
>sn= ieiiro CCA:^AC-i\CACACCCCC7GGAivZ7G^CAQACAaAZASCAAAIC

3LASI Result for 'lie /Uicrs.'bylol/Mast-result-smait.ttt

1. <3x -it.iii..-2 leaijth: 613i
e re - l i s t ' . 26 b i t s t -Vaiae : 3

1Z'2ZQ 7GACJiItl C-r AT
v i i r i w v i G c c c i
SI=CAGCMiliGCA

TccAGCcikrTrr
^. :7Gcrcca / iacA

3ACl'AArCAiv."ijG

•;.'GG;,-.t';-;;.-G-0 -S tto c G K ; - ••GG.-G'., • G .oc•;-;;• a C3G;;i;; . - S C G g-ae:rv: ; . . 6 C

• l i n h I M I i I m i l l h i i l l i h l I I I M I I I M I i h l l l h M l i
•*:••.GG"*.t7r--S"G""" :i-'GG""tT GGc GG*'.G G'-Gt.cr*G"rGG."r'r- -.zn-Q Hatch: 51..110

GG-.c:cr,.t!CS";ccG'G,.G<c.' Gi;-.G,.SG c&vc c GS-w--5s;.v,.GCG s •:•.:: oaerys si.

•nil liiiii 1:1 mill miiimi mm mimmimiin
GG--.!r"Ci:/-G':-G::r..:G-*-G--G •::!!•* Gi"*G"5G GGr;: r Gi"--•••--GG""':--G'^^G G i! •: K a t c h : i l l
. : - - ••:- G- aG-Ci: 'K-,;. . '. G e e • GG- •<. •« C'fc-a.-C GG- Oviery; 121

iiiii mm m mm mmmi mm miinmimmi
c ; i / -C . : . . c ; -Gc .aG;- tx ; -G-cc ; - - «;-GG;-;-^aG-.;-t:^G;-t;;-G%;GCC.GG;-Kjitchr ; H
. . G ::^G-c^-!-. • : : ; :•• ; . €-::.: •::• G G-.. c GC; G ; . ' • . . f v t- G^--.- •• Q u e r y : 131

iim him i I mm hmiihi mm i mnmNhmi
G ;;-G.c .• ,x; - ',-;;;; ;; G G • c sv s/f . c .• c G- . • Katchs 231

GG***G*G*.* GGG":*G"G*G OG:.* T*.* " G*'.* *•* "T "• . •crC* *: * " 'GrC.:* Q-JSry: 241

•mi him I I mm nmiihi mm i iiiMmimmi
3G-.,.-G-.3'.-. 3GS.. - .G, .G- .G; GGl :.-..-,,,e •:,,.-^-.. :.C , -:.-..:: .---, -..,, BtCi- S a t c h ! 2 5 1

•rGG""G-- G "" GG G." .• G •-- .--•GG- • i! • • -GGGG--/-G O u e r v : 331

iim mm m mm nmnm mm i mnmmmn
•-tJG-G- G - GG-G, •• G I- ' -GO- •: ' • tJGCG ' G K a t c h i 351

C..t;C • G ; ; - G :--•!--3C1: G. C . •C.GGG...>G;-i..C--..;-aC. . ';G.--.G;-GtVG6 .;... O-Jery. 351

iim mm m mm niimm mm rmiiMmniin
i-,-s:i-.,-'G::,-Q ;-:::-is::.-: c - ' t GGG.-.Gn.- t-.- »GC -GG . S - G - ; C G G - .-..- K a t c i ; : 411

•;.VGG.-.GGVCGi: C*.- 'tfrVG- ^ C -.GG;:.* GGf. * GV'V V C ..••. G Q-aery-: 421

• im him i I mm hmnhi HUM I mhhmhMh
t:"-.".GG".GG" "GGC C'.'-. CGVG • C* ".GG..*"'. " GGC GfC **** t*. G * "• G* H a t c h : 471

12t!

. 1 (0

. l e t i

. 2 3 0

.2<10

. 2 9 0

. 3 5 0

. 3 5 3

. 3 6 0

.UO

. 1 2 0

. 4 7 0

. 4 6 9

, 5 3 0

Fig. 3.31. Alignment without gaps

Running BLAST using SwingBlast 151

Blasi Resu i i

s c o r e = 1 2 2 .

.c< a-aG

Swi rgBia s i 8 las l ResuSi Help

>:;1 5395395 r e i SK_SS'3432.2 lIortD i^,iLJ-c::s c y s l ^ e ; I^Dro ; ;_s iraiisEitir.ti-rsir.e
cons3uciar ,ce r c f j u - a i c x , ;iZP--bi.:",i3i:ii: c a s s e t t e Csub- la^isl^y C, £TX-;T^C'I." 7) (CF

AA-T rCCAJiC CAA/.:? C/.CATC ACAGCAOQ TCAG/.CMul^^G G'T rCAGC GGCAGG SAC C CAGAG 7hQ lACG
7C":;iGCCA::;ri'iGCAGCZTGA0CCCAaf>,CaGCCCZA3C&CCSACCC€<\CCGCCCSAGAGftCC&:;GCAGAG
C 7CC CC r c %? aG.\A^.\G GC CSC CO J T C rC ? CC Aa&C 7 r*: 7 r r ?C ACC r G OAC CftC?.C CAAT T 77 CftGCAAA

^BOit^nr-i GC?sTAC/iCAC;iGCCCCTGC/iA:?7G"C/iCACA:?ATACCi\Jy\7CCCZrcrCirC^\T"CTGC™GAC/M\rC7Ar
:A7rAA7CCCC7
17CACCAA7iGCA
aiCGC7C7A7CG
; t ; cAuccA:7r7

;^G27CCGAf.GA

! AC IILNZ ClitJiD

BLASS Hisuft tsf File /Users/htjol,-blast-resdt--small tx t

"G*.*** *G" *C " - iSJ-C '.:

b i t s E-Val ' J ,e : 6 . 5 7 6 3 5 9 - 2 5

• G.-a-;:ir: G - C S S C ' ; ; ! ; - G-V S J G •>:

GG: .G*1*C C". GC C.. GC*1*C C.".. **•€.". 3GG."*. C

;: iiO.--- . r -Gti : . -.G;.G G i: :-•-:-••.

• • -GlXG OLse rv : 3 3 5 . . 3 5 6

ill Mii

•. • • • : G G G G K a t c h ; B 3 C 8 3 . . 8 5 1 3 1

;-C/G.,G'V-;T;C-" .G G.--V g a e r y : 2 3 . . 8 2

i l M M li n :
•.:._-G:i-GCG.rG-':--G':3\c M a t c h : 5 6 7 1 9 . . 5 6 7
: •• •• ..--G Q-jerv: 8 3 . . 1 3 S

i l l h i i i l
; • . C-M K a t c h : 5 6 7 7 9 . - 5 6 3 3 2 2 3 - g i 1

S c o r e =

IIiK.1

V2i l e a y t h : 150143
934 b i c s E - V a l u a : 2 , D Z 3 3 5 a - 7 4

SCOTS " i 4 3 .

; M I J Milji'l i ' l l ' i l Hi Ml II Ml I J i l l]

v i T Y i i y i iU 'Miiy i MiMiiiiriT'MiM
; a «• f;c e; :;.vc occ 30->,. •; •, c

: • G -.G G" .-. .. G- G O ' j e ry : 5 3 5 . . 5 7

n M I IM iM i l M i n i IM

... &G . G.- •...• ...G- ..G f a t e ! - . : 6 7 7 9 3 . ,

222 b i t s f - v a l u e : 7 . < l i l C 2 5 - 3 1

M a t c h

O u e r y

p i i e ry

1-latGh

3 5 5 , . 4 1 4

6 7 6 1 5 . . 6 7 6 7 8

4 1 5 . . 4 7 1

6 7 6 7 9 , . 6 7 7 3 8

4 7 5 . . 5 3 4

6 7 7 3 5 . . 6 7 5 9 6

Fig. 3.32. Alignment with gaps

Summary

In this Chapter we have demonstrated the development of a complete
BLAST application using the NCBI QBlast package. We created BLAST
API and demonstrated how they could be used for BLAST analysis using a
user interface, which allows users to send sequences to the QBlast service.
We demonstrated the use of existing BioJava libraries to retrieve
sequences from GenBank. We also enhanced the BLAST search output by
allowing users to link returned hits to GenBank and to view alignments in
color. The NCBI BLAST service is an indispensable resource for
biomedical research and is frequently among the first analytic tool that is
used in routine research investigations. The purpose of this Chapter was to
provide the user with a comprehensive understanding of the resource as
well as to demonstrate how J2EE can be used to develop user-friendly
applications to simplify this fundamental research activity. In the next

152

Chapter, we will explore another useful resource - PubMed and expose a
different aspect of Java - namely, JavaServer Pages and Java Servlets.

Questions and Exercises

1. We have built SwingBlast to retrieve sequences from GenBanic.
Enhance the application by including the functionality to retrieve
sequences from other data sources such as Ensembl, Swiss-Prot,
etc.

2. The aim of BLAST searches is to provide information on the
biological function of an unknown piece of nucleotide or protein
sequence. Write an application that takes the basic SwingBlast
framework and provides information on the returned hits from
other functional data sources such as Entrez Gene, UniGene, Gene
Expression Omnibus (GEO), HomoloGene, OMIM (Online
Mendelian Inheritance in Man^")̂, etc.

Additional Resources

Ensembl - http://www.ensembl.org/index.html

Entrez Gene - http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene

GEO - http://www.ncbi.nlm.nih.gov/projects/geo/

HomoloGene - http://www.ncbi.nlm.nih.gov/entrez/query.fcgi

OMIM - http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=OMIM

Swiss-Prot - http://www.expasy.org/sprot/

UniGene - http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=unigene

QBlast - http://www.ncbi.nlm.nih.gov/BLAST/Doc/urlapi.html

Running BLAST using SwingBlast 153

Selected Reading

UniGene: a unified view of the transcriptome. Pontius JU, Wagner L,
Schuler GD. In: The NCBI Handbook. Bethesda (MD): National Center
for Biotechnology Information; 2003.

NCBI GEO: mining millions of expression profiles - database and tools
Tanya Barrett, Tugba O. Suzek, Dennis B. Troup, Stephen E. Wilhite,
Wing-Chi Ngau, Pierre Ledoux, Dmitry Rudnev, Alex E. Lash, Wataru
Fujibuchi and Ron Edgar. Nucleic Acids Research, 2005, Vol. 33,
Database issue D562-D566.

An Overview of Ensembl. Ewan Birney, T. Daniel Andrews, Paul Bevan,
Mario Caccamo, Yuan Chen, Laura Clarke, Guy Coates, James Cuff, Val
Curwen, Tim Cutts, Thomas Down, Eduardo Eyras, Xose M. Fernandez-
Suarez, Paul Gane, Brian Gibbins, James Gilbert, Martin Hammond, Hans-
Rudolf Hotz, Vivek Iyer, Kerstin Jekosch, Andreas Kahari, Arek
Kasprzyk, Damian Keefe, Stephen Keenan, Heikki Lehvaslaiho, Graham
McVicker, Craig Melsopp, Patrick Meidl, Emmanuel Mongin, Roger
Pettett, Simon Potter, Glenn Proctor, Mark Rae, Steve Searle, Guy Slater,
Damian Smedley, James Smith, Will Spooner, Arne Stabenau, James
Stalker, Roy Storey, Abel Ureta-Vidal, K. Cara Woodwark, Graham
Cameron, Richard Durbin, Anthony Cox, Tim Hubbard, and Michele
Clamp. Genome Res. 2004 May; 14(5):925-928.

Chapter IV

Facilitating PubMed Searches: JavaServer Pages
and Java Servlets

Introduction

J2EE is a powerful platform for developing sophisticated web-based
applications. This J2EE feature is especially critical for Bioinformatics
software development given the availability of a large number of important
biological sequence and biomedical data repositories on the WWW that
biologists need to access on a routine basis for their research. We will
explore one such resource - NCBI PubMed - in detail in this Chapter and
introduce the Java Servlet and JavaServer Pages (JSPs) technologies to
facilitate searching, retrieval and storage of biomedical data from PubMed.

HTTP and CGI

We will begin by refreshing our basic knowledge of standard protocols
such as the Hypertext Transfer Protocol (HTTP) and the Common
Gateway Interface (CGI) that allows for a server to pass requests from a
client web browser to an external application and in return allow the web
server to return the output from the application to the web browser.
Although there are several more HTTP commands than GET and POST,
we will introduce only these methods here and refer interested readers to
the HTTP specification Request for Comments 2616 (RFC 2616) for more
information.

156

HTTP Protocol

HTTP is a client/server protocol that WWW users utilize everyday to
download web pages to their web browsers. The client part of this protocol
is handled by the web browser that sends a request to the server (also
called an HTTP server or a web server). The server responds to the request
with a web page. That, put very simply is all that HTTP does, at least for
the purpose of this discussion.

The request sent by the client contains an HTTP command with a set of
parameters that define the request. For example, to request an HTML
document called index.shtml from the NCBI server, one can issue the
following command using telnet:

t e l n e t www.ncbi.nlin.nih.gov 80
GET / b l a s t / i n d e x . s h t m l HTTP/1.0

telnet is a program that connects a local computer to a server on the
network and allows users to issue commands directly to the remote server.
The HTTP protocol works over the Transmission Control Protocol/Internet
Protocol, a suite of communications protocols used to connect hosts on the
WWW, also called TCP/IP for short. In this case, the HTTP protocol
works over the TCP/IP protocol that one can access through a session
initiated by telnet, using the specified server address
(www.ncbi.nlm.nih.gov) and the port (80).

There are other pieces of information that could be passed to the
request, to specify information about the client and the type of data it
would like to receive. Also a blank line specifying the end of the request
must be added at the end.

When such a request is sent to the NCBI server, the output received
contains several difference bits of data, along with the actual document
requested, if found.

HTTP/1.1 2 00 OK
Date: Sun, 12 Feb 2006 18:13:42 GMT
Server: Nde
Accept-Ranges: bytes
Content-Type: text/html
Connection: close

<?xml version="l.0" encoding="UTF-8"?>
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 157

Trans i t iona l / /EN"
"http://www.w3.org/TR/xhtmll/DTD/xhtmll-

t r a n s i t i o n a l . d t d " >

(The output has been truncated for clarity.)

The first line corresponds to a code indicating the status of the response
- 200 OK - which means the requested operation was executed
successfully. After the status line we have information about the server
itself. Finally if the document is available it is sent within the rest of the
response.Other code and associated descriptions are defined in the HTTP
specification and provide information regarding any problems accessing
the server, if the requested document is not found, etc.

GET and POST Methods

Although a client can send different HTTP commands, the GET and
POST commands are the most commonly used. GET allows users to
retrieve or get information from an HTTP server, while the POST HTTP
command allows users to post or send information to the server. The POST
information resides on the server, usually within a database. The GET
command is just for querying the HTTP server and therefore won't be
stored, unless for statistical purposes or for logging the load on the server.

GET can send parameters within the body of the URL to specifically
query the HTTP server. Since GET was designed for querying purposes,
the URL length is limited to a certain number of characters (250) on
certain servers. The POST method, on the other hand, can send more
information, including different documents types, and does not have a
constraint on length.

CGI For Generating Dynamic Content

According to RFC 3875, CGI is a

"... simple interface for running external programs,
software or gateways under an information server in a
platform-independent manner."

158

This simply means that if you have a program that runs on your Unix
machine and you want to access it through a web browser, you can do so
using CGI. The way it works is that each time you request to run that
program, the web server will create an instance of the program, pass to it
all the parameters obtained from the request that was sent, wait for the
program to process the information and then wrap the program output into
an HTTP response.

This allows users to generate the content of a web page dynamically
instead of accessing static HTML content. It can be very slow when 100
users access the same program because the server must create 100
instances of the same program to run the 100 queries.

A number of vendors have implemented their own API's to handle the
performance issues of CGI or to replace that interface with proprietary
protocols. Sun Microsystems, for example, has developed proprietary
technology that will run in a Java Virtual Machine and handle the required
processes that live on the server via the Servlets and JavaServer Pages
technologies.

Servlets and JavaServer Pages Technologies

Now that we're more familiar with HTTP, it's time to learn about
servlets and JSPs. Before we present the Java API, lets briefly review the
advantages of using servlets over typical CGI programs:

• Once the servlet container is started, each servlet runs in the same
process as the container; this avoids creating new processes for each
request, unlike CGI programs.

• Because the servlet is created once at startup, it remains in memory and
there is no overhead associated with loading the Java class multiple
times. The service just needs to request the servlet from a pool and call
its service method.

• A servlet is reusable, which saves memory and time.

These characteristics allow faster execution of the server processes to
generate dynamic content. In addition, the fact that it is Java brings with it
the power of the "Write once, run everywhere" properties of the platform.

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 159

Java API for Servlets and JSPs

From the servlet specification available at the Sun Microsystems
website, a servlet is defined as a "Java technology-based Web component,
managed by a container, that generates dynamic content". Servlets are Java
classes that implement a base interface called s e r v l e t , from the
javax. s e r v l e t package available in the Java Enterprise Edition Platform.
j a v a x . s e r v l e t . S e r v l e t is the basic interface which provides the
s e rv i ce () method that handles a client request independently of the
protocol used to communicate between the client and the server. To create
a servlet one can directly implement this interface or extend
Gener icServle t or Ht tpServle t .

The life cycle of a servlet is managed through three methods:

• i n i t : the container instantiates a s e r v l e t object and calls init to
initialize it.

• se rv ice : upon a client request, the container get the servlet and calls its
s e rv i ce method.

• destroy: when the servlet is not in use any more, the container will call
the des t roy method.

Fig. 4.1 below shows the life cycle of a servlet (called MyServIet) when
a client request comes to the container.

Servlet Container
request

Client

response ' • My Servlet. serviceQ

Fig. 4.1. Life cycle of servlets

Since we want to deal with HTTP requests, we are primarily interested
in the j a v a x . s e r v l e t . h t t p . H t t p S e r v l e t package to create Ht tpServle t
Java classes. We will learn more about this package in the next few
sections.

160

Before we delve into the servlet and JSP technologies, let's briefly
review the MVC framework that we had introduced in Chapter 1, which
we will be using as a guiding principle for building our web application.
We will also briefly review the Apache Tomcat Server, which we will use
as our servlet container. Finally we will also talk briefly about the
JavaServer Pages Standard Tag Library (JSTL), to introduce the concept
for the benefit of readers to explore further on their own.

JavaServer Pages Standard Tag Library (JSTL)

JavaServer Pages (JSPs) use custom tags to perform all kinds of
manipulations like iterating over collections, transforming one object into
another, form processing, database access, and the like. The idea behind
JSTL is to create libraries with reusable tags. These tags can be used and
customized like functions or methods in Java. This also creates clarity in
the JSP file because the tags allow users to keep the JSP as the View and
the business logic or the Controller and the Model separated from each
other. In other words, one can think of JSTL as a Java package that groups
together functionalities into a set of independent and reusable and tags.

Apache Tomcat Server

Tomcat is an open source servlet container, which implements the Java
Servlet and JavaServer Pages technologies written in Java. This is the
servlet container we will be using in this Chapter. The Tomcat servlet
container allows developers to deploy web applications as well as to
monitor and manage them. Tomcat compiles the JSPs into servlets when
first called, or just before calling the application. Tomcat also allows
defining the realm for specific authentication and authorization services
that may be required for web applications. A "realm" in Apache
terminology is "a "database" of usernames and passwords that identify
valid users of a web application (or set of web applications), plus an
enumeration of the list of roles associated with each valid user." The reader
is referred to the Appendix for further information on how to install
Tomcat. More information can also be found at the Apache Tomcat Project
website of The Apache Software Foundation.

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 161

The NCBI PubMed Literature Search and Retrieval
Service

PubMed is a resource maintained by the National Library of Medicine
(NLM), under the aegis of the National Center for Biotechnology
Information (NCBI, National Institutes of Health, USA) and provides
access to over 14 million citations for biomedical articles dating back to
the 1950's. PubMed is a vast resource and covers scientific findings from a
diverse array of disciplines including but not limited to the natural and
physical sciences. According to usage statistics from NCBI, over
59,000,000 queries seeking scientific information were submitted to the
PubMed server in March 2004 alone

(http://www.ncbi.nlm.nih.gov/About/tools/restable_stat_pubmed.html).
Indeed, PubMed is an indispensable resource for researchers all over the
world.

As vast and valuable as PubMed is, average users still have to contend
with the problem of retrieving useful and relevant knowledge from the
underlying database in a piecemeal fashion using one or more keywords.
PubMed also doesn't currently provide a way to intelligently or visually
analyze the results of a query (for example, by highlighting or color coding
the search terms in a retrieved abstract, etc). We will address some of these
issues and create solutions for them in this Chapter to enhance the value of
literature search and retrieval through PubMed.

Accessing Biomedical Literature Through Entrez

Access to information in NCBI databases is granted through a service
called Entrez, a search and retrieval system maintained by NCBI that
combines information on individual DNA and protein sequences, large-
scale sequence data from whole genomes, and information on 3-
dimensional structures of biomolecules. It also grants access to
MEDLINE, which covers research in a number of Life Science areas such
as medicine, nursing, dentistry, veterinary medicine, the health care
system, and preclinical sciences. The steps involved in a typical search on
PubMed are described below. We will use the generic keyword "HIV" (for
Human Immunodeficiency Virus, the causative agent of Acquired Immune
Deficiency Syndrome, AIDS) for the illustration.

Step 1: User navigates to the NCBI PubMed website (Fig. 4.2):

162

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed

Step 2: User enters the search term 'HIV (the search is case-insensitive)
in the search box and presses Enter. PubMed presents the user with a list of
citations relevant to the search term (Fig. 4.3). Internally, PubMed searches
for a match between the supplied keyword(s) and terms in the Medical
Subject Headings (MeSH) Translation Table, an alphabetical hierarchy of
controlled vocabulary terms used for subject analysis of biomedical
literature at the NLM. The list of citations may span several thousand
pages depending on the number of articles that match the search term.
Each journal article on PubMed is associated with a unique numeric tag
called the PubMed Unique Identifier or PMID.

Step 3: User clicks on the citation to display specific information (Brief,
Abstract, Medline etc) about each journal article (Fig. 4.4) or selects
several articles to display (Fig. 4.5).

• !'ii!i.r one ui iiioie scauh tena? or click
!w-.v Thii.--- foi advnnced scarclimg

• hiisLr giffhoi nmic-- a? smith jc Iiinjal;: are
•••[.•l i ' i i ial

« hiiicr j'.'Uiiial lirl-.-:- in fiill oi a.̂ MEDLH^TE
-.ilil'ieViafioilK Use Hie Jr.MlJ!.!]- F ' i t l j ls i /c tO

tiii-i joiiinal titles

Fi.iJMJIed, a service of ttie National Library of
[•-•ledicine. includes over 15 million citations for
iT'ioiriadlcal articles back to the 1950"s. These
citations are from MEDLINE and additional life

iijen'.e journals, PubMed includes llnl̂ s to many
rite-; î Toviding full text articles and other related

resources.

I'lUok-Adf .-Uclittons |cUiiiriiI Qneiles

/ .--.tetiitoi Bmluay I he i,:liiil.-.jl •j.i:ri-x: pa.je
.• • f f t f L > ; / . -Ith '.•••'•!' i f i | . v l . - i i v -T l to
; .1 and Thf pm»lde .in improxed

Fig. 4.2. The NCBI PubMed web resource

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 163

..II-. I hi..LVf., f. ' l- HIV Go Clear

I.' :.|- -V Sumiricity •••li-v 20 3i>rt Send to Text

M-iiV- I .''1 f f I / . . : I'-' Page 1 . •!' :;;• j .

I a.E:tL-eU ui!].vrUTA ',Mi-jhI.\ i:i..ii.|, PE NmL _i K:.ii-ci I T - .:;r :i ^-:;:i:-:. L

.:Wiici2i>'tic nicieases m intracellular Ca(2+f. and the release of KICP-L FL\NTES. and
L-6 liyastioc\iep heated witliopiafes and HIV-1 Tut
ilm ilVi^ Tan.>. [F-i>iil) al.ca.l of|)ni.t]

•^l.EL> 15(>3iJ"(i4 [Pullikd - 3? ^uyplieil by piil*lisher]

•jifliieiite nf HriFt t;feneric X'anation on Susceptibility-' to Hl \ ' Tvpe 1 Difectjon
"Iiifevt Di,= 2U05 Fsb l.lPliSiivijl 1) S'JS-"?''.

\audonii7,ed- Coiitrulled Trial nf Tlierapy liitemiptioii in Clii'onic HIV-1 Iirfection,
='T.«.SR[e.l 2W4DecJ ' l l eo - l F].iil. 2004 Dw 28,

cell it l i t! ie>t-ivoirg ol

Fig. 4.3. Search results for the term 'HIV

• :• ly Abstract Sin.'. 20 Sort Send to Text

• li:i J " ! ' " .1:111 -., | | ' |>ul ' :ill'..-l<i • • l lMl l i l l

>viiergis'tic increases in intiacellular C'a(2+), and the release of ISICP-1,
\< 4NTES, and IL-6 by astromes treated w ith opiates and H H - l Tat.

I 1 H;i2e N. Gni well JX Sinsh IN. Kiiapp PE. Nath A. H:iuser KF,

I • ;paitnient of Anatoni}" and Neiiiobiolos>; University of Kentucky College of Medicine.
I • xington. Kentiick)"

L.cent evidence .̂ U22e>'t>; that injectionduisu?^ers \iho ahii>:e heroin iiie at inciea>:edii4:of
•JS complications fiom human inmiiinodeficiency vims iHTd infection C'piate dm2s may

II nnsically altei the pathogenesis of HI\" by diiecth" inodiilatin-i; ummine flmction and by
• iiectly modif}"ins the CNS iespon>:e to HiV Despite this, the mechanisms by which opiates
11 .-lease the neii^">patho,senesis of HR' are unceitam. In the present stndy. we describe the
• feet of inoiphine and the HR'-i protein toxin Tatri-"2) on astroglial fimction m cultmes
• nve. l f io i i i Ti'̂ R vwu-e A-^hntrli.i i i inintmn rlie hloi-..i-l>inin hnnie i and inf lnei i .p

Fig. 4.4, Viewing abstracts for individual journal articles

164

•tii loots hWp

j . ••' htl:pL//www,ncbi,nlm,nih,gav/enLhez/query,|-i;gi'':P'lD^5ea(chcJ:iB^pubmed

Publ^ed

I t ti uit t t 1 il -a
H I E T n [E il 1 1 11]
FHIE Ic 41 [Futri I J- H I 1 til 1-]

I- 1 H 1 F 11 F T

I to n_ t t tt T t t t I t
Tl n [Ef dl J f (. It]

FIIIE I [F Vill i n i l ri J h i]

uit t t' lease 111 cell culture

tl through viral evolution

I, r 11 r Deep; D, Afae-ud JD, Tkiur. [x'!. &eniei: EJ., Gn-udrfc E

L l l t a t t i i t t i l l i p f u t i t ior capsule opaciScatioL.
1. Tl IT , _ , ^ t J 1 , 1

FLIID Ir- 41 J4|T i l t M i uj-f In-It i tmlrli lint]

H I " I injL-t-iJi i 1 U J 3.J] itiTli . - r i l - r t j " ite.
Hit « - . t . H i . . ' 441in iJ_ 4LL H. al.slia.1 1 4iWU.
FHID lc ' ' _4J i4 [Fumr I in f i . ^c]

Fig. 4.5. Selecting several articles to view abstracts

The user can save articles of choice in the chosen display format
(Summary, Abstract, etc) by selecting the required articles and pressing the
"Send to" button and selecting the appropriate format (Text, File, Email,
etc) (Fig. 4.6).

Facilitating PubMed Searches; JavaServer Pages and Java Servlets 165

L'LjIf ly Summary ^li.iv 20 Sort Send to :.Text

l l . ' i i i - . 1 - " ••• ! I / ' . ; !•• F . 1 1 !
File

I • Clipboard
•iyiiciî i>^uc nicic;i^e:- in m[nicclllil;» i-'aii^i. nwi Uic rtlcii^:c ui^"""^'' u\ lt>. :iii<l

iL-6 b\- asironte.s tieared with iipmres and HIV-1 Tat ^^^^ '
Siin. 200 ' Jiiik 3. [Eiiiil. aheaj yt praii]
ei.Ell 1563U7U4 [Piiblsled - aj supplied by p\iWi4n-i]

tiifliieiKe of Ho.̂ t Ckjiefic "\'aiiation on Sii?ceptibiljty to HR' T\pe i Infettion
r i i i f c a l t e 2 0 0 ' F C H , 1 ' ' U S I I I I I J I 1) S 6 8 - - "
fB.ni) l fo3 '- lo^ [Piibllot - uipi.x€,.s]

;• H'-'.-»-'-'.-E-I-;.J-.m..iiJE Mi-:«iji i : « ; , i j t j l tTii.,.-t--i,lli.-.. ' _-UjimL ,.
7..l i t ' , .1 T l u d n Pi<rilll-J 2,I-,d.-jrn,.-i.. \ SlniU T j . [„„ t .„„ LI

ixandoniized Contjolled Trial of Therapy Iiitenuption m Cliionic HR'-l hifection
PLoSMetl 20II4l3ec.l(3leD4 Epiib 2004 Dec 2,̂
i'i.mi it'l?:^mo9 [PublleJ - af supplied byp t i bMia]

I: •r..iiL.r2-;-:-;iiY .Sulli.auJ .'..mfa E, .y i . - .n -E . i _iaiv..miJ.oi_-EA Fi,-lisi 1. ,Ac;,a i-... j . - , ; - - , ; • ... :,
•J TL.jiii;.ii.f.n-.l y,,|W,iIJ Eiaiil. LIJII1_V4_;, J P.i i i . t i iuii iM NiiiuiuiG

!l_7"_i5.A.aQteiiLamiix.arinili:ti:iiui-sj;t£iif!.L^^^^^^

Fig. 4.6. Saving search results for selected abstracts

The search process quickly becomes unwieldy especially when
information from a large number of citations needs to be extracted and
analyzed. In this Chapter, we will demonstrate the power of Sun's
JavaServer Pages and Java Servlets technologies to build a web-based
application to simplify the process of accessing information on PubMed.
We will use the Apache Tomcat server as the servlet container and the
Apache Ant tool to build and deploy the Java web-based application.
Please refer to the Appendix to download the tools and for instructions on
using them.

Create Web Application With Servlets and JSPs

Servlets as we described earlier are Java code that run on a server and
provide a general framework for services built using the request-response
paradigm. HTTP, is one such paradigm that is implemented through the
javax.servlet.http package from the Java Servlet API. On the other hand,
JSPs were designed to mainly allow the separation of the business logic
(what the application does) from the appearance of the page (how the
application displays the result).

166

The steps and the flow diagram below illustrate the behavior of such an
application (Fig. 4.7):

Step 1: The user accesses the application through a web browser. The
actual code that runs the application remains hidden from view. The user
only sees and interacts with an HTML page, which for our first application
will contain a simple search form consisting of a single text-box and a
submit button. The user enters a single keyword (search term) in the text-
box and presses the submit button. After the search is processed by the
application, the user sees the results in the web browser. Fig. 4.7 illustrates
the actions of the user in the User Space.

Step 2: The application is implemented as a servlet that gets the
information entered on the search form and processes the request on the
NCBI PubMed server. This involves a series of operations. The application
constructs the PubMed URL that is specific to the entered search term.
Next, through a URL object, it sends a request to the PubMed server. The
PubMed server performs the search using the keyword and formulates a
response, which is an HTML document containing a list of citations
matching the search term. These operations are shown in the Application
Space (Fig. 4.7).

Step 3: After processing the request, the PubMed server sends the search
results back; the application reads the result from the URL using a
Buf f eredReader object to retrieve the content sent back from the server.

Step 4: Once the response is received, the application reads the contents
of the response using the BufferedReader object and prints it out to the
screen using the j a v a x . s e r v l e t . h t t p . H t t p S e r v l e t R e s p o n s e object.

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 167

in .vu . I PiTii

Enter search term on PLibMed server:

Subniil L-

...i-,.-

- Serelet

Receive request from HTML Fonn
f HttpServletRequest object]

Get the search term

Create NCBITIRL ft-ith the search term

Send reqtjest to NCBI PubMed
[URL object]

Get abstract from NCBI PubMed
[BufferedKeader object]

Send the HTML document back
] HttpServletResponse object]

1 -scr Sp.itc A|3|;liciUioii S[i£ice

Fig. 4.7. The structure of the PubMed 1 servlet

Web Application Structure

According to the Java Servlet API Specification 2.2
(http://java.sun.com/products/servlet/download.html), a web application
(or web app) is a collection of servlets, HTML pages, classes, images, and
other resources that can be bundled and run on multiple containers from
multiple vendors. Simply stated, a web app bundles resources together to
provide a portable and server independent way to access information via a
web browser. In order to be portable and server independent, a web app
must be designed according to a well-defined schema that dictates where
the resources used by the web app are to be placed. This ensures that there
is no conflict between the different resources used by the web app. The
web app has to be installed on the web application server and mapped to a
specific uniform resource identifier (URI) path (called also the servlet

168

context path) on the server. The file structure of the web app is archived
into a WAR file (Web application ARchive).

For example, the application we are writing is installed on the web
app server using the path pubmed, for example:

ht tp : / / loca lhos t :8080/pubined

as is explained further below. Here is the file structure of the pubmed
web app being developed:

example.html
pubmedExample.jsp
jsp/moreSpecificPubmedExample.jsp
pics/pubmedLogo.png
anotherLogoExample.png
WEB-INF/web.xml
WEB-INF/classes/servlet/DataRetriever.class
WEB-INF/lib/Jakarta-regexp-1.3.jar

The basic layout that defines a web app file structure is as follows:

• HTML, JSP, PNG (image) and other resource files must be located in
the root directory to be visible in the web browser.

• web.xml is located in the WEB-INF directory under root, web.xml is the
Web Application Deployment Descriptor for the application. This file
defines in an XML format the configuration information utilized by the
web app such as initialization parameters, servlet mappings, security
constraints, etc.

• WEB-INF/classes: This directory contains all the Java classes (and
servlets) with any resources associated with them that make the web
app. The Java class servlet.DataRetriever is Stored in WEB-
I N F / c l a s s e s / s e r v l e t / D a t a R e t r i e v e r . c l a s s .

• WEB-INF/lib: This directory contains all the Java™ Archive (JAR) files
required to run the web app, including third parties libraries such as
Jakarta-regexp-l.S.jar for regular expression matching.

Access to the web app or any resource from the web application server
available at the localhost and port 8080 is through the following URL:

http://localhost:808 0/pubmed

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 169

This access is set up in the http.conf configuration file located in the
Tomcat 'conf directory. Any web application is deployed on the web
application server using a relative path.

If we want to access the HTML pages located in the WAR file in the
root directory, for instance, for a file called example.html, we open the
following URL in the web browser:

ht tp : / / loca lhos t :8080/pubmed/exainple .h tml

The WAR archive may also contain images that can be found in the
/pics directory. To access the pubmedLogo.png picture, for example, we
need to point our web browser to the following URL:

http://localhost:8080/pubmed/pics/pubmedLogo.png

To access the servlet DataRetriever, in the web app descriptor file we
wrote the mapping from the path in the URL to the actual Java class that is
going to handle the HTTP request. This Servlet can be accessed at the
following path:

http://localhost:8080/pubmed/DataRetriever

Creating a Servlet to Access Biomedical Literature

We begin by declaring a package called PubMed. Next, we import the
necessary packages, which contain the classes that are used by the servlet.
In order to implement the design described in Fig. 4.7, we need to create a
Java Servlet class called PubMedServieti_i that extends
javax.servlet .http.HttpServlet , the Standard base class for HTTP
servlets. We then need to override the doGet () method as shown in the
code below. The doGet() method takes two parameters: the
HttpServletRequest object (called req) which is the client request and an
HttpServletResponse object (called res) which is the response sent back
to the client. Since the method returns nothing, its return type is void.

It is conceivable that the process of sending a request to a remote server
and obtaining a response back may encounter errors. Java has objects
called Exceptions to handle such occurrences. The Java Virtual Machine
(JVM) will inform the caller using Exception objects when a program does
not behave the way it is supposed to do. This object is " /̂zrown" when that
error or unusual condition occurs and it stores information about the

170

particular error event. In order to inform the developer that such an
exception can be "thrown" from the method, we use the appropriately
named "throws" Java keyword in the method signature. We declare
ServletException, which defines a general exception a servlet can throw
when it encounters errors and lOException to catch errors due to failed or
interrupted I/O operations. Another way to handle exceptions is to use the
try-catch block. We will see how to use try-catch blocks later in the
Chapter.

Let's return to the servlet creation process. The general signature of the
doGet method is shown below:

Protected void
doGet(HttpServletRequest req, HttpServletResponse res)

throws ServletException, lOException { }

since we are sending a text or HTML response, we set the content type
to text/html with the line:

res.setContentType("text/html");

Next we request a Printwriter object to write the text to the response
message:

Printwriter out = res.getWriter();

Next we create HTML to create a form that users can utilize for
conducting searches on PubMed. In its simplest state, the form will have a
title, a search box and a submit button. The HTML for the form is as
follows:

<HTML>
<HEAD><TITLE>PubMed Servlet 1.1</TITLE></HEAD>
<B0Dy>

Java for Bioinformatics:
PubMed Servlet version

l.l\n

Please enter a term to search on NCBI

PubMed:

\n
<FORM METH0D=GET>\n
<INPUT TYPE=TEXT NAME=searchTerm>

\n
<INPUT TYPE=SUBMIT VALUE=\"Search PubMedX">
\n

</FORM>
</BODY>

</HTML>

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 171

The search form as it appears in a browser is shown in Fig. 4.8.

t-ile Edit View 'jo Book-nafNs Tools Window Help

. http;//localhosi:;8080/pmd_05-01-O3-201546/?searchTerm-HIV

Ja¥a for Bioinformatlcs: PubMed Servlet version 1.1

Please enter a term to search on NCBI PnbMed:

Search PubMed

Fig. 4.8. The PubMed servlet version 1.1 search form

To implement the form in code, we create an object called html of the
type StringBuf f er:

StringBuffer html = new StringBuffer("<HTML>");

and append the HTML code to it:

StringBuffer html = new StringBuffer("<HTML>");
html.append("<HEAD><TITLE>PubMed Servlet

l.l</TITLE></HEAD><BODY>\n");
html.append("Java for Bioinformatics: ");
html.append("PubMed Servlet version

l.l\n") ;
html.append("

Please enter a term to search on NCBI

PubMed:

\n") ;
html.append("<FORM METHOD=GET>\n");
html.append("<INPUT TYPE=TEXT NAME=searchTerm>

\n");
html.append("<INPUT TYPE=SUBMIT VALUE=\"Search

PubMed\">
\n");
html.append("</FORM>\n") ;

The URL to send the search term is:

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi ?dispmax=l0&db=pubmedSr
cmd=search&term=term

In code we implement this in the following manner:

172

URL u r l = new URL
("ht tp: / /www.ncbi .nlm.nih.gov/entrez/query.fcgi?dispmax=lO&db
=pubmed&cind=search&term=" + URLEncoder.encode(term, "UTF-
8")) ;

Note the parameters on the URL (separated by ampersand symbols '&')
that specifies what information we want to submit to the PubMed engine to
retrieve data:

dispmax=10
db=pubmed
cmd=search
terin=term

We are limiting the search to ten articles (dispmax=10) for the purpose
of illustration only. We select the database as PubMed (db=pubmed) and
provide the command to search (cmd=search) with the search term
(term=term). Next, we open the connection to the server;

URLConnection urlConnection = ur l .openConnec t ion() ;
BufferedReader reader = new BufferedReader(new

InputStreamReader
(u r lConnec t ion .ge t Inpu tS t ream())) ;

In the next step, we construct a regular expression to extract the
PubMed Ids (PMIDs) of the abstracts that match the search term and create
an array to store them. To do this, we will use a Java Regular Expression
package available from The Apache Jakarta Project available as a JAR file
called jakarta-regexp-1.3.jar:

string s = null;
RE pmidRE = new RE("PMID: ([0-9]+) \\[PubMed");
Collection pmids = new ArrayList();

while ((s = reader.readLine()) != null) {
if (pmidRE.match(s)) {
pmids.add(pmidRE.getParen(1));

}
}
reader.close();

Listing 4.1 shows the code for PubMed servlet version 1.1

Facilitating Pub Med Searches: JavaServer Pages and Java Servlets 173

Listing 4.1. PubMed Servlet version 1.1

package org.jfb.PubMed;
import org.apache.regexp.RE;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import j avax.servlet.http.HttpServletResponse;
import j ava.io.*;
import java.net.URL;
import Java.net.URLEncoder;
import Java.net.URLConnection;
import java.util.ArrayList;
import java.util.Collection;
import java.util.Iterator;
import java.util.Properties;

public class PubMedServletl_l extends HttpServlet {
protected void doGet(HttpServletRequest req,

HttpServletResponse res)
throws ServletException, lOException {
res.setContentType("text/html");
PrintWriter out = res.getWriter();

StringBuffer html = new StringBuffer("<HTML>");
html.append("<HEAD><TITLE>PubMed Servlet

1.1</TITLE></HEAD> <BODY>\n");
html.append("Java for Bioinformatics: </h>");
html.append("PubMed Servlet version

1.l\n") ;
html.append("

Please enter a term to search

on NCBI PubMed:

\n");
html.append("<FORM METHOD=GET>\n");
html.append("<INPUT TYPE=TEXT

NAME=searchTerm>

\n");
html.append("<INPUT TYPE=SUBMIT VALUE=\"Search

PubMed\">
\n");
html.append("</FORM>\n");

String term = req.getParameter{"searchTerm");
if (term != null) {
html.append("
<HR>
");
html.append("You have searched NCBI for the term

'" + term + "'.");
URL url = new

URL("http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?dispmax=10
&db=pubmed&cmd=search&term=" + URLEncoder.encode(term, "UTF-
8"));

URLConnection urlConnection = url.openConnection();
BufferedReader reader = new BufferedReader(new

InputStreamReader(urlConnection.getlnputstream()));

String s = null;

174

RE pmidRE = new RE("PMID: ([0-9]+) \\[PubMed");
Collection pmids = new ArrayList();

while ((s = reader.readLine()) != null) {
if (pmidRE. inatch(s)) {
pmids.add(pmidRE.getParen(1));

}
}
reader.close();

html.append("

PMIDs found:
\n");
int i = 1;

for (Iterator iterator = pmids.iterator();
iterator.hasNext();) {

String si = (String) iterator.next();
html.append("<a href=\"")

.append("http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Re
trieve&db=pubmed£idopt=Abstract&list_uids=")

.append(si)

.append("\">")

.append(si)

.append("\n");
if (iterator.hasNext() && i++ != 5) {
html.append(" - ") ;

} else {
html.append("
");

}
}

}
html.append("</BODY></HTML>\n");
out.print(html.toString()) ;

}
}

The next few lines of code iterate over the array for each of the PMIDs
of abstracts matching the search term and print them out along with a
hyperlink to the original abstract on PubMed. The structure of the servlet
and its component files is shown below (Fig. 4.9).

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 175

PubMed

org

jfb

PubMed

PubMedSer¥let1_1.ja¥a

PubMedS6r¥let1_2.java

PubMedServlet1_3.Java

Fig. 4.9. The PubMed servlet structure

To see the servlet in action, start the Apache Tomcat Server, compile the
code and run it with the command:

ant i n s t a l l

Apache Ant is a Java-based build tool used to manage the different steps
in the development cycle of an application, which include compilation of
the code libraries needed for the application, creating the necessary JARs
for deploying an application, etc. It is available from The Apache Software
Foundation website. For further information on installation and use, please
refer to the Appendix.

j V ^ .,.,..„.T..,„...

/ -<-
t ,^ '"• Apache Jakarta Project

,-.:uvcsetu^T:mcr-^uc;e:3full,.

Fig. 4.10. Logging into the Tomcat Manager

176

Open the following URL:

http://localhost:8080

When the Apache Tomcat welcome page loads, click on the Tomcat
Manager visible on the left panel and login into the server using the
credentials you specified during installation (Fig. 4.10). Access the latest
build of the application to view the servlet. The output of the search with
the keyword HIV using the first version of our program, which we will call
PubMed Servlet version 1.1, is shown in Fig. 4.11.

File Edit View Go Bookmarks Tools Window Help

I //localh!j5t;3080/!Jmd_(j5-01-05-Z0Z401/?5earchTerri!=HIV

. - • : . ! [• • I J ", PubMed Servlet 1.1

.}A\.^ loi r.ioinloim.uic^:

Please enter a term to search on NCBI PubMed:

Search PubMed

You have searched NCBI for the tenii 'HIV.

PK'IIDs found:

15630704 - 15630678 - 15630469 - 15630452 - 15630446

1563Q430 - 15630360 - 15629958 - 15629857 - 15629784

Fig. 4.11. Output from the PubMed servlet using search term "HIV"

In the first version of the application, we are simply validating our
approach and displaying just the PMIDs for the abstracts that match the
entered keyword. To check that the code works and retrieves the correct
data, we hyperlink the PMIDs to the original abstracts on PubMed.
Clicking on 15630704, for example, opens up the abstract corresponding

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 177

to the PMID for the abstract that shows up in the search performed directly
on the NCBI PubMed webpage (Fig. 4.12).

l.'l

Abstract

lir-- J a n .

I

. ILpiit J

.„ . ,
t i J •-.

20

IpjUilJ

. , • . • , : : • ;

Sort

isd
Go C

Send to Text

•'.̂ iiergiNficmcre îNes in intrmcellular Ca(2+), and the release ol MCI'-l,
l< \JNTES, and IL-6 by astrocytes treated with opiates and HIA -I I iii

I I Hage N. Guiwell JA. Siii^h IN, Kimpp PE, NaUi A, Haiisei K F .

imhiient nt Anatniiiy ami Neuiobioloa)-', University of Kentucky College of Medicme

mqtoii- Keututb."

ciit evidence •U!i;3.ê l̂ ' tliiit injection dma uii'er^'who iibiise heroin are at increaii'erl ri-i. ••!

S .jcmiplicntioii^ tioin liiiiiiM muiiiiuodetkieiKy vini; fHI\'i iiifcctinn i.fpiate Jiu^^v nvw

iisicnily niter the pathosenesis of HI\" b)" directly irioduhitiim luuiiiiiie fiuatiori and b"

cthniodilS'iimthe CNS re^pmFe to HI \ ' Despite this, the iiieclianisins b\" xi'hicli r-pnk--

eiî -e the nemopntliot^eiiesis ot HiV nre uiiceitaiii Iii the present f t̂ndy, \vt describe th.

I rt ,-.f i nn rn i i i n f i n H t l ipT-Tn'- l nn i fp i i i tr.^'iti T^ti \ .--< t ,-,u 'isjti r.'?! in I tiinrU.-.u in ,-| i lhi ip_

Fig. 4.12. PubMed article corresponding to PMID 15630704

The results in Fig. 4.11 and Fig. 4.12 are identical to the search output
obtained from a search with the keyword 'HIV at NCBI PubMed at the
time of this writing (Fig. 4.13).

-tjii

= • V ,; S^iiei5i?hcuicicn.-ei,mmti [PRIH* 1 ?<.>,!• j"<l4]

. I V . - ! :,i Liflucnce uf Hi.^t Gtiicti.. V^,- [B^m:^ Lf'C.il.-irS]

i--.--,.r ^t.il P.,i,idomL-!e,l r'f.iitiolle-1 Txi^l IPl-IID l^-yiMiVt]

F - l ' t i . l IL-"ib flT)0kiit3iulpiu-Mi..l [Pl^nii l?b304?2]

! ! =' J. Lleiitificattou »t cifUiilai .le, .[FRin* lio,Hi44Cf]

M=;A';-.vA.ll?..:.£-.Ll Th>riiemc-p,itlv..^nie^i^of_Air)H [PMID t 5 « 0 4 i 0]

K ' ; ! i.l .-ytEiation-.otNfi'.alMuuitik [PMID 1NX5U.-("H]

l!,:- tt .il Piot^fl;=e Liliil'itoi CombrnfttH' [P I , I ID- I fo i^ fS - j

I'c-, r . er .̂ 1 A PKA-tiaii-i-oitiiii coiiiua^itc t [PMID l?iS2fi"S4]

. •! id Plir, . i i l ira>latonofHI*NcH>y [PMID l ^ o J t r - .)]

.-.-it=r,i | M,iiiuiwLniiSr_A>ID™ii,,imDunei-I [PMID l ? t a o - 2 4]

t •>l IIitii-i\c2i-m' e:q)it£SJon- tliar [PMH) i5p:>i'..i5]

14: . i J ' H t ' . i ! A2i»f\bm :in .mtifiumal|iqjt, [PMTD t'^oJC'-'^rj]

Fig. 4.13. Results of NCBI PubMed search with keyword "HIV"

178

Displaying PubMed Abstracts

In order to make the search output more useful for researchers, we
would like to parse the abstract from each citation and make it available
for viewing right up front as part of the search results. We will now create
the code to parse out the abstract from each of the articles that are returned
by a search.

The general framework of the program is as follows:

1. Create the search form
2. Retrieve the keyword(s) provided by the user
3. Retrieve PMIDs from PubMed corresponding to the search term
4. Retrieve abstracts based on each of the PMIDs obtained in step 1
5. Iterate #4 until all abstracts have been retrieved

To create the search form, we create a method called
createSearchForm() which creates a variable of type StringBujfer called
html and append the various html tags to it in succession:

private StringBuffer createSearchForm() {
StringBuffer html=new StringBuffer();
html.append("<HTML>");
html.append("<HEAD><TITLE>" + TITLE +

"</TITLE></HEAD><BODY>");
html.append("Java for Bioinformatics: ");
//html.append("PubMed Servlet

version 1. K/bx/f ont>\n") ;

html.append("<hl>" + TITLE +
"</hl>");

//html.append("Please enter a userKeywords to search
on NCBI:

\n");

html.append("
Please enter a term to search on
NCBI PubMed:

\n");

html.append("<F0RM METHOD=GET>\n");
html.append("<INPUT TYPE=TEXT NAME=" + KEYWORDS +

">

\n");
html.append("<INPUT TYPE=SUBMIT VALUE=\"Search

PubMed\">
\n");
html.append("</FORM>\n");
return html;

}

Note that the text box for entering keywords is called KEYWORDS. We
will use this name to retrieve the user-supplied keywords. The resulting

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 179

search form for the next iteration of the application, which we will call
PubMed Servlet version 1.2, is shown in Fig. 4.13.

File Edit Ymw Go Bookmarks Tools Window Help

•, http://Iocalho5t;8080/pmd_05-01 -12-212042/

Ja¥a for Bioinfoimatics:

Please enter a term to search on NCBI PubMed:

Search PubMed

Fig. 4.13. PubMed servlet search form version 1.2

We then retrieve the keyword(s) from the search box using a method
called getUserKeywords () :

String userKeywords = getUserKeywords(req);

This method takes in the HttpServletRequest req object as a parameter to
return the keywords:

private String getUserKeywords(HttpServletRequest req) {
return req.getParameter(KEYWORDS);

}

The next few lines perform some basic user input validation. If you
press the search button without supplying any keywords, for example, the

180

program will return an error message: "Please enter keywords to search."
(Fig. 4.14).

File Edit View Go Bookmarks Tools Window Help

\ httrj: //localhost; SOeO/pmdJS-01-10-21082t/?keyword5=

Java for Bioiiifonnafics:

Please enter a teim to search on NCBI PiibMed:

Search PubMed

Pkisc ciitei- Ixvwmtk to scarcli!

Fig. 4.14. User-input validation

We then create a variable of type StringBuffer called sbPmids to store
PMIDs corresponding to the search terms and a String variable called
searchURL to Specify the search URL:

Str ingBuffer sbPmids = n u l l ;
f i n a l S t r ing searchURL =

"http: / /www.ncbi .nlm.nih.gov/entrez/query.fcgi?dispmax=10&db=
pubmed&cmd=search&term=" -I- URLEncoder.encode(userKeywords,
"UTF-8");

Next we write a method called getPmids () to retrieve PMIDs from the
keywords. The method takes one parameter, the searchURL, which in turns

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 181

contains the keyword(s) embedded in it. The result of the operation is
stored in an object called sbPmids:

sbPmids = getPmids(searchURL);

We place the method within a try-catch block we had briefly mentioned
earlier to catch any exceptions that may arise while the request is sent to
PubMed. If we do indeed encounter an exception, the method will trap the
error, print out the offending error message and exit.

try {
sbPmids = getPmids(searchURL);

}
catch (lOException ioe) {

ioe.printStackTrace();
errorMes = "

We are sorry, the

system could not establish connection to the NCBI PubMed
server " + "with the URL "" + searchURL + "".
Please try again later.

";

}

The method getPmids () itself looks like this:

private StringBuffer getPmids(String searchURL) throws
lOException {

BufferedReader reader = new BufferedReader(new
lnputStreamReader(new
URL(searchURL).openConnection().getlnputstream()));

StringBuffer sbPmids = new StringBuffer();
String pmid;
String s = null;

while ((s = reader.readLine()) != null) {
if (pmidRE.match(s)) {
pmid = pmidRE.getParen(1);
sbPmids.append(pmid + " , ") ;

}
}
reader.close();
final int length = sbPmids.length();

if (length > 0) {
sbPmids.delete(length - 1, length);
return sbPmids;

} else {
return null;

}
}

182

The method:

BufferedReader reader = new BufferedReader(new
InputStreamReader(new
URL(searchURL).openConnection() .getlnputStream()));

can be broken down into more readable chunks of code as follows:

URLConnection urlConnection = new
URL(searchURL).openConnection() ;

InputStream inputStream = ur lConnec t ion .ge t InputSt rea in() ;
BufferedReader reader = new BufferedReader(new

InputStreamReader(inputStream));

If no exceptions have been raised and if PMIDs have been obtained as a
result of the search, we proceed to get the abstracts from the PMIDs. The
method we use here is called getAbstracts() and returns an object of
type StringBujfer called abstracts. The method takes a parameter called
urlAddress, which specifies the location of the abstract based on the
corresponding PMID:

if (errorMes == null) {
if (sbPmids != null) {

String urlAddress = citationString +
URLEncoder.encode(sbPmids.toString() ,

"UTF-8") ;
StringBuffer abstracts = null;

// 3. Retrieve the abstracts from the PubMed IDs
try {

abstracts = getAbstracts(urlAddress);
} catch (lOException ioe) {
ioe.printStackTrace();
errorMes = "

We are

sorry, the system could not retrieve the abstracts using
keyword(s) Squot;"

+ userKeywords + "Squot; with the URL
<PRE>"" + urlAddress + "Squot;<PRE>

";

}

The code for the method getAbstracts () is as follows:

private StringBuffer getAbstracts(String urlAddress) throws
lOException {

BufferedReader citationReader =
new BufferedReader(new InputStreamReader(new

URL(urlAddress).openConnection().getInputStream()));
StringBuffer abstracts = new StringBuffer();

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 183

St r ing s ;
while ((s = c i t a t i onReade r . r eadL ine ()) != nu l l) {

a b s t r a c t s . a p p e n d (s) ;
}
r e t u r n a b s t r a c t s ;

}

Next we get information from the matching articles corresponding to
each abstract. This includes information such as the title, authors, source
journal in which the article was published, and the like. An example of the
MEDLINE format, which is parsed to extract this information, is shown in
Fig. 4.15. Note the tags on the left - PMID, OWN, DP, TI, AB, AU, AD,
SO. These represent respectively the PubMed ID, the owner (the
organization that supplied the citation data for MEDLINE), date of
publication, title, abstract, authors, address and source journal.

^^^s^^^^i^s
Cite i j t a«M So eoo'̂ ia'i"-^ lo

'.̂ \^ ''^ -^

te •iinda-'i

\- http\!l"i:

saaap
tlelp

" ^^b, nl

^ ^ ^ ^ ^ ^ ^ ^ ^ ^ ^ K

, nih gov/eritre::j'qiiery, fcgi^il Ci-=.[ii:splayariG-pLjbnied j '-^ Search \ '' ' -3 •/:•.:
'''ThZ''''cu^'r''AstT6'cYte's''"i-aK rau-opioid r ^ i c e p t o r s ; a n d a r e l i k ^ i l y

t a r g e t s f o r a b u s e d o p i a t e s , w h i c h p r e f e r e n t i a l l y a c t i v a t e m u - o p i o i d
r e c e p t o r s . t J h i l e T a t a l o n e d i s r u p t s a s t r o c y t . : f u n c t i o n , w h e n c o m b i n e d v i i
m o r p h i n e , T s t c a u s e s s y n e r g i s t i c i n c r e a s e s i n [C a (2 +)] (i) . M o r e o v e r ,
a s t r o c y t e c u l t u r e s t r e a t e d w i t h m o r p h i n e a n d T a t s h o w e d e x a g g e r a t e d
i n c r e a s e s i n c h e i i i o k i n e r e l e a s e , i n c l u d i n g m o n o c y t e c h e i t i o a t t r a c t a n t
p r o t e i n - 1 (M C P - 1) a n d r e g u l a t e d o n a c t i v a t i o n , n o r m a l T c e l l e x p r e s s e d a i
s e c r s t e d (R A W T E S) , a s w e l l a s i n t e r l e u k i n - 6 (I L - 6) . M o r p h i n s - T a t
i n t e r a c t i o n s w e r e p r e v e n t e d b y t h e m u - o p i o i d r e c e p t o r a n t a g o n i s t
b e t a - f u n a l t r e i £ a n i i n e , o r b y i m i i i u n o n e u t r a l i z i n g T a t (1 - 7 2) o r s u b s t i t u t i n g i
n o n t o K i c , d e l e t i o n m u t a n t (T a t (D e l t a 3 1 - 6 1) 3 - O u r f i n d i n g s s u g g e s t t h a t
o p i a t e s m a y i n c r e a s e t h e v u l n e r a b i l i t y o f t h e CMS t o v i r a l e n t r y (v i a
r e c r u i t m e n t o f m o n o c y t e s / m a c r o p h a g e s) a n d e n s u i n g H I V e n c e p h a l i t i s b y
s y n e r g i s t i c a l l y i n c r e a s i n g M C P - 1 a n d RAHTES r e l e a s e b y a s t r o c y t e s . T h e
r e s u l t s f u r t h e r s u g g e s t t h a t a s t r o c y t e s a r e k e y i n t e r m e d i a r i e s i n
o p i a t e - H I V i n t e r a c t i o n s a n d d i s r u p t i o n s i n a s t r o g l i a l f u n c t i o n a n d
i n f l a m m a t o r y s i g n a l i n g m a y c o n t r i b u t e t o a n a c c e l e r a t e d n e u r o p a t h o g e n e s i :
i n H I V - i n f e c t e d i n d i v i d u a l s w h o a b u s e o p i a t e s , (c) 2 0 0 4 W i l e y - L i s s , I n c .
D e p a r t m e n t o f A n a t o m y a n d N e u r o b i o l o g y ; U n i v e r s i t y o f K e n t u c k y C o l l e g e c
M e d i c i n e , L e i ^ i n g t o n , K e n t u c k y .

E l - H a g e N
AU
AU -
AU -
AU -
AU

LA -
PT
DHP -
TA -

J I D -
E D A T -
MHDA-
A I D -
PST -
BO -

G u r w & l l J A
S i n g h I N
K n a p p PE
M a t h A
H a u s e r KF
EPJG
JOURNAL A R T I C L E
2 D Q S D 1 D 3
G l i a

5 8 0 5 7 9 5
2 D 0 5 ; 0 1 . / 0 5 • 9 : D 0
2 0 0 5 / 0 1 / 0 5 0 9 : 0 0
1 0 . 1 0 0 2 / g l i a . 2 0 1 4
a h e a d o f p r i n t
G l i a 2 D 0 5 J a n 3 ; .

Fig. 4.15. The MEDLINE format

Parsing of these elements is done using the Jakarta regular expression
library. Let's see how we can parse the PMID from the MEDLINE record
displayed above. Note that the PMID is bounded by the tags PMID and
OWN as shown in the enlarged Fig. 4.16 below.

184

File Edit View Go Bookniarks lools Window Help

'., http;/;'iAiww,ricbi,nlnn,nih,gov/entrez/i

SMieî ^TisTK iiKie;i;-es in

PMID-
OWN -
STAT-
DA -
PUBM-
I S
DP -

15 6 3 0 7 0 4
NLM
P u b l i s h e r
2 0 0 5 0 1 0 4
P r i n t - E 1 e c t r o n i c
0 8 9 4 - 1 4 9 1
2 0 0 5 J a n 3

Fig. 4.16. Parsing the PMID

We could use regular expressions to capture the PMID and other
information if all the MEDLINE records had the same standard format. A
few of these tags are not present wherever information is not available. For
example, sometimes the abstract is not available. In such cases the AB tag
is not present in the MEDLINE record which makes it a little more
difficult to construct a regular expression that is generic enough for all
cases. We demonstrate an alternate method that locates the position of
each start and end tag and captures everything in between. We will declare
the tags we will use to construct regular expressions at the beginning of the
program:

p r i v a t e
p r i v a t e
p r i v a t e
p r i v a t e
p r i v a t e
p r i v a t e
p r i v a t e
p r i v a t e
p r i v a t e
p r i v a t e
p r i v a t e

s t a t i c
s t a t i c
s t a t i c
s t a t i c
s t a t i c
s t a t i c
s t a t i c
s t a t i c
s t a t i c
s t a t i c
s t a t i c

f i n a l
f i n a l
f i n a l
f i n a l
f i n a l
f i n a l
f i n a l
f i n a l
f i n a l
f i n a l
f i n a l

S t r ing
S t r i ng
S t r i ng
S t r ing
S t r i ng
S t r ing
S t r ing
S t r ing
S t r i ng
S t r i ng
S t r ing

pmidTag = "PMID- ";
pmidEndTag = "OWN - ";
titleStartTag = "TI - ";
titleEndTag = "PG - ";
abstractTag = "AB - ";
abstractEndTag = "AD - '
fauthorStartTag = "FAU -
authorStartTag = "AU - "
authorEndTag = "LA - ";
srcTag = "SO -";
medlineEndTag = "</pre>";

We will next create code for the method that we will call
getArticlelnfoO for retrieving the information:

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 185

private StringBuffer getArticleInfo(StringBuffer tmp, int
pmidStart, int endMedline) {

StringBuffer articleTmp = new StringBuffer();
String pmidl = tmp.substring(pmidStart +

pmidTag.length(), tmp.indexOf(pmidEndTag));

int titleStart = tmp.indexOf(titleStartTag);
int titleEnd = tmp.indexOf(titleEndTag);

if (titleEnd < 0 || titleEnd > endMedline)
titleEnd = tmp.indexOf(abstractTag);

int abstractStart = tmp.indexOf(abstractTag);

if (titleEnd < 0 || titleEnd > endMedline) {
titleEnd = tmp.indexOf(fauthorStartTag);

}

if (titleEnd < 0 || titleEnd > endMedline) {
titleEnd = tmp.indexOf(fauthorStartTag);

}
String title = null;

if (0 <= titleStart && titleStart < endMedline) {
titleStart += titleStartTag.length();
title = tmp.substring(titleStart,

titleEnd).replaceAll("(\\s+)", " ") ;
}

int end = tmp.indexOf(abstractEndTag);
String tmpAbstractTag = abstractEndTag;

if (end < 0 || end > endMedline) {
end = tmp.indexOf(fauthorStartTag);
tmpAbstractTag = fauthorStartTag;

if (end < 0 || end > endMedline) {
end = tmp.indexOf(authorEndTag);
tmpAbstractTag = authorStartTag;

}
}

String article = null;
if (abstractStart + tmpAbstractTag.length() <= end) {

article = tmp.substring(abstractStart +
tmpAbstractTag.length(), end).replaceAll("(\\s+)", " ") ;

}

int authorStart = tmp.indexOf(authorStartTag);
String authors = null;

if (0 <= authorStart && authorStart < endMedline) {
authorStart += authorStartTag.length();

186

int authorEnd = tmp.indexOf(authorEndTag);
authors = tmp.substring(authorStart,

authorEnd).replaceAll(authorStartTag, ",
").replaceAll(fauthorStartTag, ", ") ;

}

int srcStart = tmp.indexOf(srcTag);
String journal = null;
if (0 <= srcStart && srcStart < endMedline) {

journal = tmp.substring(srcStart + srcTag.length(),
endMedline);

}

// Let's create the document
articleTmp.append("<a href=\"" + PUBMED_ARTICLE_LK +

pmidl + "\">" + pmidl + "").append("
");
articleTmp.append("<U>Journal</u>: ") ;
articleTmp.append(journal != null ? journal : "No

journal listed").append("
");
articleTmp.append("<u>Authors</u>: ") ;
articleTmp.append(authors != null ? authors : "No

authors listed").append{"
");
articleTmp.append("<u>Title</u>: ") ;
articleTmp.append(title != null ? title : "No

title").append("
");
articleTmp.append("<u>Abstract</u>: ") ;
articleTmp.append(article != null ? article : "No

article").append("
");
return articleTmp;

}

The output of the second version of the PubMed servlet program that
automatically parses the abstracts for each of the returned citations is
shown in Fig. 4.17. Each of the abstracts is marked at the beginning with
the PubMed ID which in turn is hyperlinked to the citation on PubMed if
the user wishes to see the original record at NCBI.

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 187

[SediJi

^Mt\i 1 ElHa^-f I f iirvpil i-i, - , d i r , i u I I I I |] J P E n ^ t l i ^ H a r r r l F

TitlF . tii-r-itii is i t^d ^ mmhdi lliJdt r ^ : * : jriJ tin-teli d i - . t l T T : 1 R_^NTE" ddd IL n i , d l tn! ,ti-J^t.dr^'!l ^itlmpdth dtii'HIV 1 Tdt

i -b - r rv t FpiPriLPyiilPtii-p ugpp^t to+miPi t im ibj^iUPt- u}m shn-'-hnnm j tPit^-irrPd f i l n 4 i i r u ? riimjilirilinn. finmhmnm JtiniiUiof'''briPjii • TTII i H r n

iiitr riiiii Dia^tfihi-' l id ' mbiii all ditct ilimJliD-'i^ic^i ut H l V i ' Jir.-ahmmWdiBi-'itijmi^r tiajiii ti andf^'i duti tl, niitiktTti-'liiE r n t,. put -• ti Hi^"

Lp.pitetai t ' l t i iu; IiM-iiis h' \ i l j i ! u p d t r . ttiLird r t'iP ii-luuiJdtlii zp'ie . o^ Hi dti-u'lLr-rtdu 111 te I ri-stiit tud" ..;e d^'SLnbe the etiti t ct uiutpljiK dfldtl^

HP. ' 1 pi iti-Hi 11 j^iTarfl ^S\ tn d^Bn^hjlTiai! mnm rulhitp ilfir^filSuni I L P I'm i- i- -tiD^iiamauitdir flu 11 n ri hd i r lidnipr diiriinJupfii f mtlaiunidtur" nTiJ i i i j in

til- I i r -"•ttiiL 1"r I -ai r [iif mil r|iiiiiilrri rfilrt diia dii' ill e i ' toj]Pt•. tnt jti i pii ojiiitt- >.iiii h j i rptrpt ihi l l ' v ti db' iiiu njnnid tPi f|i!iir ''^'IUJP Tat aln-ip

ill^li^it =.ti it-'-tr trail hnii .ihrtii imlnird . itl mril,ilMir Tdt i all e ,IJP1 J til It i r d i- 111 [I di ̂]nl Hiiirn i-i a tl ii t r nJtiai- t(Pdtr-rl .utii miiljilutii- aliii Tdt

.liii'Vcd r^d^jcidtpdmuicdic . m i h^uutjiie 'c lcd.c di.l«i'iii3 1iiariii. t e LlieiiiJdmdLld:it;ii!.tcLi 1 (l-lL'F 11 diiiiicj-aiitrd Wi ±' tii dtiLii. w i m J T < cE c ^ i i c t - J dtid

pu i - tp i rR^ l JTE d. .. i-li d> mtpfli-iikm r. IIL T i M3itiliiin-Tdt irt.-id tmn. ,Pi i- | t -- i-nn-ilt, t'j.-1 ii r^iMi.ii.- ^ptri d n t a ? ^ 11 ^ a traialti? .^imin- J : I

sihum i..iiEinki:i.'Tat/l " . m i -iJj.t^rti.i: a i . u t u j Ul i i nu iwa i i . iT i t iEr t t i . ' ! n i i u u hiilu.2. jigi - t i ' u t -iiidl^. m j ' iti i - i ." t l i i t aud l ik r ' l i th ' L'U) i

Udlriitr I la i r i^mti i ini t t m . i u -tr^ UM i jflidi-r.: a,iH n , im^ H f r a u r i l i i u t i h •.•tw.^tiJi m u e ^ tti,: 'Mrp ! djul FJ^IITE-, i - l^ i r I a ti.ii i f Tlir

IP.lilt turtbci H3ie . t tb j td .hL ' t . . . a i e } c ii ti-tmi-UdHc m puir al 'nlct A n u, ^Eii 'i viyn-'u a j . t i r i h j l S in bnji iiniiiiEjimiiitf r i - i i i m j m s , ruriiiiiiiitc tn

^1 :r plpijt^,lnpur|-!tli '--liP 1 u ih l . 'mfpr t r l i i iHi i in l ' -T^ 'b . a ln-r r j u tP - i i ÎIIM " UP-'11 Jur

biatidl r Intel t i l „Jll'. I-eb ' i-"iLuj^il 1 1 - j '

Aut'iiii K ^ 1 M „ F A r m d k , T p ^ M ^ D M f J T Ta tn Idixir I aiiijjii; Tdt : ll

Titl- IhfliPi. p-ofHj tiictictu, • dn.dtiJiiiin:ifcirnh'iilifbi ^i[•""T^l- 1 Ititritini

jiJi tidi r FDI tbi'' re"iP." nt grn-hi -H I pptihiM; ti bHriaiiUiupmiii IPL IPHI "• j n r P ir \ intrction. tai nuixr u.ii!jmi=ni!iii d_ ai aJ.a'Hc on tarbu iir'ol r d m ai quLiliir

i f djp virui L ' diuiiuiiie-tcJ ici.iOicnl iluij nnpiui aj i t ionb ' tbcHii'- tr-f ioiur ' j cnc t i , ^di:diiiiuii"= unidbl' dlicii tidii.Jiur-.Lai iiJia jijmtei-tcdhn.t piuiijiili' Li'

r---ridtoinli '-ir-ilir3tiin.it Mil dijdtiP nn i-tittdtWii i l id i t i I n .ut ildtiiijiulilMiildnlmiH i al nii- t i ti i t tin-i itr-tihJ il m.i. T in tbr r f ln t. it l i n t jniPiii

iiijbuiunf:d:i.iiii.uiL:idii-m. J i i M' lioifril 11 tiic •• dl •.-tiUlibtr 1 did jj > ' u t i d r t t i . t . t W U d . I< d ' ii. h t t u c i i ^ d J t . trnftttiui. Ti= i . u u di.drt tb ' > tt^<t. m l Ji

I 11 I'- iti4i-ci]iPiit. bd bi-pfj J i l ' T S - n i i b u u i - t n l e j iut-dit£j)lt

!niuiial Pf r M P J ' f i n ' t TIP- JTii PI 4 F^mu Xn-i T rr'•Z

^Httii t Pdf d a—^ E Vu tt(ianlF„ MnmiSPt K ijiaiitPLI i > j F, ildlli i" .i=z iw L Fi iilkt- ^ TIUPI E Fi fUli M H d t l j r . 2 'V . IjJl ' IlntitaiiPt L '

- îrlr- P-,idi!'m"pd rHittiillf-lT al n f" iHa(i IfitPtniii liits tH'btntir KIV 1 tiifpi fim.

_ " ""=' - ^ * "5°

Fig, 4,17, Displaying abstracts for matching PubMed articles

The complete code for the second version of PubMed servlet (version
1.2) is shown in in Listing 4.2.

Listing 4.2. PubMed Servlet version 1.2

package o r g . j fb,PubMed;

import org.apache.regexp.RE;

import j a v a x . s e r v l e t . S e r v l e t E x c e p t i o n ;
import j a v a x . s e r v l e t . h t t p . H t t p S e r v l e t ;
import j a v a x . s e r v l e t . h t t p . H t t p S e r v l e t R e q u e s t ;
import j a v a x . s e r v l e t . h t t p , H t t p S e r v l e t R e s p o n s e ;
import j a v a . i o . * ;
import j ava.net.URL;
import j ava.net.URLEncoder;
import Java.net.URLConnection;
import j a v a . u t i l . P r o p e r t i e s ;

publ ic c l a s s PubMedServletl_2 extends Ht tpServ le t {
p r i v a t e s t a t i c f i n a l S t r ing TITLE = "PubMed Se rv le t

vers ion 1.2";
p r i v a t e s t a t i c f i n a l S t r ing KEYWORDS = "keywords";
p r i v a t e s t a t i c f i n a l S t r ing PUBMED_ARTICLE_LK =

private
private
private
private
private
private
private

private
private
private
private

static
static
static
static
static
static
static

static
static
static
static

"http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve£[d
b=pubmed&dopt=Abstract&list_uids=";

private static final String citationString =

"http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cind=Retrieve&d
b=PubMed&dopt=medline&list_uids=";

private static final RE pmidRE = new RE("PMID: ([0-9]+)
\\[PubMed");

final String pmidTag = "PMID- ";
final String pmidEndTag = "OWN - ";
final String titleStartTag = "TI - ";
final String titleEndTag = "PG - ";
final String abstractTag = "AB - ";
final String abstractEndTag = "AD - ";
final String firstAuthorStartTag = "FAU -

final String authorStartTag = "AU - ";
final String authorEndTag = "LA - ";
final String srcTag = "SO -";
final String medlineEndTag = "</pre>";

protected void doGet(HttpServletRequest req,
HttpServletResponse res)

throws ServletException, lOException {
StringBuffer html = new

StringBuffer(createSearchForm());

// 1. Extract the user-supplied keywords
String userKeywords = getUserKeywords(req);
if (userKeywords != null) {

if (userKeywords.equals("")) {
String errorMes;
errorMes = "

<font

color=red>ERROR
Please enter keywords to
search!

";

html.append(errorMes);
} else {
html.append("
<HR>
");
html.append("You have searched NCBI PubMed with the

keywords '" + userKeywords + "'.");

// 2. Retrieve the PubMed IDs from the user
// keywords

StringBuffer sbPmids = null; //sbpmids
final String searchURL =

"http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?dispmax=10S[db=
pubmed&cmd=search&term="

+ URLEncoder.encode(userKeywords, "UTF-8");

String errorMes = null;

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 189

try {
// if (true) throw new IOException("Testing the

connection failure here!");
sbPmids = getPmids(searchURL);

} catch (lOException ioe) {
ioe.printStackTrace();
errorMes = "

We are sorry,

the system could not establish connection to the NCBI PubMed
server "

+ "with the URL Squot;" + searchURL + "Squot;.
Please try again later.

";

}

if (errorMes == null) {
if (sbPmids != null) {

String urlAddress = citationString +
URLEncoder.encode(sbPmids.toString(), "UTF-8");

StringBuffer abstracts = null;

// 3. Retrieve the abstracts from the PubMed
// IDs

try {
abstracts = getAbstracts(urlAddress);

} catch (lOException ioe) {
ioe.printStackTrace();
errorMes = "

We are

sorry, the system could not retrieve the abstracts using
keyword(s) Squot;"

+ userKeywords + "squot; with the URL
<PRE>Squot;" + urlAddress + "Squot;<PRE>

";

}

if (errorMes == null) {
int pmidstart = abstracts.indexOf(pmidTag);
StringBuffer tmp = abstracts;
html.append("

Articles

found:

\n");
StringBuffer article;

// 4. Extract information from the articles
try {
while (pmidstart != -1) {

int endMedline =
tmp.indexOf(medlineEndTag);

article = getArticleInfo(tmp, pmidstart,
endMedline);

html.append(article) ;

tmp.delete(0, endMedline +
medlineEndTag.length());

pmidstart = tmp.indexOf(pmidTag);

if (pmidstart != -1) {

190

html.append("<HR>");
}

}
} catch (Exception e) {
e.printStackTrace();
errorMes = "

<font

color=red><hl>ERROR</hl>
We are sorry, the system could
not retrieve the articles for PMIDs <PRE>""

+ sbPmids + "6.quot;<PRE></f ont>

";
html.append(errorMes);

}
} else {
html.append(errorMes);

}
} else {
html.append("
No abstracts found!");

}
} else {
html.append(errorMes);

}
}

}

appendBuildProperty(html);
html.append("</BODY></HTML>\n");

// 5. Print the results
res.setContentType("text/html");
PrintWriter out = res.getWriter();
out.print(html);

}

private String getUserKeywords(HttpServletRequest req) {
return req.getParameter(KEYWORDS);

}

private StringBuffer createSearchForm() {
StringBuffer html=new StringBuffer();
html.append("<HTML>");
html.append("<HEAD><TITLE>" + TITLE +

"</TITLE></HEAD><BODY>");
html.append("Java for Bioinformatics: ");

html.append("<hl>" + TITLE +
"</hl>");

html.append("
Please enter a term to search
on NCBI PubMed:

\n");

html.append("<FORM METHOD=GET>\n");
html.append("<INPUT TYPE=TEXT NAME=" + KEYWORDS +

">

\n");
html.append("<INPUT TYPE=SUBMIT VALUE=\"Search

PubMed\">
\n");

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 191

html.append("</FORM>\n");
return html;

}

private StringBuffer getPmids(String searchURL) throws
lOException {

URLConnection urlConnection = new
URL(searchURL).openConnection();

InputStream inputStream =
urlConnection.getlnputstream();

BufferedReader reader = new BufferedReader(new
InputStreamReader(inputStream));

StringBuffer sbPmids = new StringBuffar();
String pmid;
String s = null;

while ((s = reader.readLine()) != null) {
if (pmidRE.match(s)) {
pmid = pmidRE.getParen(1);
sbPmids.append(pmid + " , ") ;

}
}
reader.close();
final int length = sbPmids.length();

if (length > 0) {
sbPmids.delete(length - 1, length);
return sbPmids;

} else {
return null;

}
}

private StringBuffer getAbstracts(String urlAddress)
throws lOException {

BufferedReader citationReader =
new BufferedReader(new InputStreamReader(new

URL(urlAddress).openConnection().getlnputstream()));
StringBuffer abstracts = new StringBuffer();

string s;
while ((s = citationReader.readLine()) != null) {

abstracts.append(s);
}
return abstracts;

}

private StringBuffer getArticleInfo(StringBuffer tmp, int
pmidStart, int endMedline) {

StringBuffer articleTmp = new StringBuffer();
String pmidl = tmp.substring(pmidStart +

pmidTag.length(), tmp.indexOf(pmidEndTag));

192

int titleStart = tmp.indexOf(titleStartTag);
int titleEnd = tmp.indexOf(titleEndTag);

if (titleEnd < 0 || titleEnd > endMedline)
titleEnd = tmp.indexOf(abstractTag);

int abstractStart = tmp.indexOf(abstractTag);

if (titleEnd < 0 || titleEnd > endMedline) {
titleEnd = tmp.indexOf(firstAuthorStartTag);

}
String title = null;

if (0 <= titleStart && titleStart < endMedline) {
titleStart += titleStartTag.length();
title = tmp.substring(titleStart,

titleEnd).replaceAll("(\\s+)", " ") ;
}

int end = tmp.indexOf(abstractEndTag);
String tmpAbstractTag = abstractEndTag;

if (end < 0 || end > endMedline) {
end = tmp.indexOf(firstAuthorStartTag);
tmpAbstractTag = firstAuthorStartTag;

if (end < 0 || end > endMedline) {
end = tmp.indexOf(authorEndTag) ;
tmpAbstractTag = authorStartTag;

}
}

String article = null;
if (abstractStart + tmpAbstractTag.length() <= end) {

article = tmp.substring(abstractStart +
tmpAbstractTag.length(), end).replaceAll("(\\s+)", " ") ;

}

int authorStart = tmp.indexOf(authorStartTag);
String authors = null;

if (0 <= authorStart && authorStart < endMedline) {
authorStart += authorStartTag.length();
int authorEnd = tmp.indexOf(authorEndTag);
authors = tmp.substring(authorStart,

authorEnd).replaceAll(authorStartTag, ",
").replaceAll(firstAuthorStartTag, ", ") ;

}

int srcStart = tmp.indexOf(srcTag);
String journal = null;
if (0 <= srcStart && srcStart < endMedline) {

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 193

journal = tmp.substring!srcStart + srcTag.length(),
endMedline);

}

// Let's create the document
articleTmp.append("<a href=\"" + PUBMED_ARTICLE_LK +

pmidl + "\">" + pmidl + "").append("
");
articleTmp.append("<U>Journal</u>: ") ;
articleTmp.append(journal != null ? journal : "No

journal listed").append("
");
articleTmp.append("<u>Authors</u>: ") ;
articleTmp.append(authors != null ? authors : "No

authors listed").append("
");
articleTmp.append("<u>Title</u>: ") ;
articleTmp.append(title != null ? title : "No

title").append("
");
articleTmp.append("<u>Abstract</u>: ") ;
articleTmp.append(article != null ? article : "No

article").append("
");
return articleTmp;

}

private void appendBuildProperty(StringBuffer html) {
Properties buildlnfo = null;

try {
buildlnfo = new Properties();
InputStream buildStream =

getClass().getClassLoader().getResourceAsStream("/build-
info, txt") ;

buildlnfo. load(buildStrecim) ;
} catch (Throwable e) {
e.printStackTrace();

}

if (buildlnfo != null) {
html.append("
<HR>Build #");
html.append(buildInfo.getProperty("buildNumber"));
html.append("\n");

}
}

public static void main(String[] args) throws Exception {
new PubMedServletl_2();

}
}

Highlighting Search Terms in Retrieved Abstracts

In version 1.3 of the PubMed servlet, we will enhance the usefulness of
the search results by highlighting the search terms in the retrieved

194

abstracts. One way to do this is to convert the search terms and the abstract
into lower case, locate the matches and then highlight the terms in the
abstract. In this method, we lose the case of the words in the original
abstract (because we converted that into lower case). To fix this, we could
find the exact location of the match and the length of the match and use the
original abstract to highlight the matching term(s).

Another way is to use the equalsignoreCase() method which
compares strings irrespective of case. For example, the following code will
find a match to the term "HIV" in text even if it contains HIV in different
forms such as hiv, Hiv, HIv, hIV, etc.

if (word.equalsIgnoreCase("HIV")) {
//code for highlighting matching terms;

}

To use this method, we have to first create an array of words in the
abstract and test if any of the individual words match the search term.
However, there are limitations to this method also. The
equalsignoreCase() method searches for exact matches and will not find
words containing punctuation marks and other characters. If, for example,
HIV-1 is found at the end of a sentence, the array element will be "HIV."
(with a period) and "HIV" is not equal to "HIV.". To fix this we need to
get rid of all such punctuation marks and other special characters.

An easier method to circumvent these issues is described below. In this
method, we iterate over the text in the abstract highlighting each term as it
is found. The regular expression itself is of the type:

(a | A) (b | B) (c | C) . . .

which will match any word irrespective of case. Surrounding such
expression in parentheses allows us to extract specific sub-strings from a
string based on a specified pattern. This is implemented in code as follows:

StringBuffer sb = new StringBuffer("(");
for (char c : chars) {

char charUp = Character.toUpperCase(c);
char charLo = Character.toLowerCase(c);

sb.append("(").append(charLo).append("|").append(charUp).appe
nd(")");

}
sb.append(")");

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 195

f i n a l S t r i n g r e g e x = "^" + s b . t o S t r i n g () + " | [" a - z A - Z] " +
s b . t o S t r i n g () ;

We will not only highlight the search term in the abstracts, we will also
color them differently for better visibility and readability. To do this, we
need to declare an array called COLOR of color elements to store the
selection of colors we wish to use;

private static final String[] COLOR = new String[]{"blue",
"#98cc02", "purple", "red", "#f7dc88"};

For each of the characters in the search term, a regular expression of the
type indicated above (with both lower and upper case forms) is created.
Next when the term is found in the article text, it is highlighted using a
different color for each matching term.

h i g h l i g h t e d T e x t = r e . s u b s t (h i g h l i g h t e d T e x t , " \ \ \ \ < b > < f o n t
s t y l e = \ " \ \ \ \ + 2 \ " c o l o r = \ " " + C0L0R[i] + " \ " > $ 0 < / f o n t > < / b > " ,

RE.REPLACE_BACKREFERENCES);
}

The complete code for the method which we will call highlight () is as
follows:

private String highlight(String articlsText, String[]
terms) {

String highlightedText = new String(articleText);
for (int i = 0; i < terms.length; i++) {

final String term = terms[i];
final char[] chars = term.toCharArray();

// Here we are creating the regular expression to find any
// word irrespective of case.

StringBuffer sb = new StringBuffer("(");
for (char c : chars) {
char charUp = Character.toUpperCase(c);
char charLo = Character.toLowerCase(c);

sb.append("(").append(charLo).append("|").append(charUp).appe
nd(")");

}
sb.append(")");
final String regex = "^" + sb.toString() +

"|[^a-zA-Z]" + sb.toString();

// Replace the text by a HTML FONT tag that
// wraps the term found

RE re = new RE(regex);

196

highlightedText = re.subst(highlightedText,
"\\\\<font style=\"\\\\+2\" color=\"" + COLOR[i] +
"\">$0", RE.REPLACE_BACKREFERENCES);

}
return highlightedText;

}

The regular expression for highlighting matched text with colored text is
constructed using the Jakarta regular expression library. In particular we
are using the subst method (short for substring), which is defined as
follows:

re.subst(stringl, string2, rules)

where,

s t r ingl : the String to make the substitution in
string2: String to substitute into s t r ingl
rules: rules that define how substitutions are to be done in s t r ingl

To refer to the contents of a parenthesized expression within a regular
expression, we use what are known as 'backreferences'. The first
backreference in a regular expression is denoted by \ 1 , the second by \2
and so on.

The rules are set as follows:

REPLACE_FIRSTONLY: replace only the first occurrence of the
regular expression in stringl

REPLACE_ALL: replace all occurrences of the regular expression in
string 1

REPLACE_BACKREFERENCES: all backreferences will be
processed, which in this case means that all matched patterns within the
article text will be replaced with string2

In our case,

s t r ingl = highlightedText
string2 = "\\\\<font style=\"\\\\+2\" color=\"" + COLOR[i] +

"\">$0"
and

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 197

rules = RE.REPLACE_BACKREFERENCES

The extra backslashes in string2 are escape characters. Note that the
expression "$0" represents the whole match, which in this case, represent
the search term(s). The output of PubMed servlet version 1.3 obtained
from an ANDed search of the terms HIV AND AIDS is shown in Fig. 4.18.

BlS^lBBlS^^^^^^^^^H
file gsit Vigi" go gDs*•Jnaf̂ ^ IDDIS ^Sridofci Hê s

%.£. . iS V - # -3 i "^ [ittp:/ilocaihD5t:aDS0/pmii_05-01-Ji-; :i Ss:-!/?! fiywoids=HIV+WJD+AlD5 1 |Q.fercb 1 -:-4^f

i j

:V

Touiiiiil Em* T Iimiiimol 2(in? Tan IS ,

Authors Stew.iit-Junes GB <\i Oleii.Ti K EoUiibei a a S- McMiclwel AT, Jones EY- Eo^i iess P
Ttfk. Cns ta i ^tiuitnreF and HIR,5I>L1 iet;o£iiifioii oi tlu«e mmimiodoiiuiiaiit i i iol peptides ioinpksefl fo HLA-E '\2"U5
-^t-gfract \'. e h.̂ l̂ 'e sobbed the cn-sfal shuctines of Hifec HLA-B"2~USpej>hdc compkxe;; v,i\\\ Hie unnumodoimiiant ^iial peptide?; E B '
EBNA3t:' 25S-2ti6 a ' J T i U L I E L) - influenza I tlus mKleoi>]oteui>]P3Sj-3^'l l>;PA"\VAIRTRI .iiid iliX £;.£ 2o4-2-3 a^L'^^HLGLNII.
Lijii^-teiiiii uou-pj ygi c>,-uin dmuiE IWC infection lir.;- been S:;sociakd \'(ith \n e^eiitatiijin by HLA-B ' 2"05, and T cell i eeusuutiou. of tht
ly'4iih"ummmodouiiiiaiitKRY.TE.GLNK peptide The tidit hy.liasen-Liouitin^ iietvvoik obfeived bcKveeu the HI ,A-B '2"05 B-poehet .mi
the peptide P2 aiEiiuiie ^i.Tiiaduiiiua anehoi esidauir: vdiy imitation of tliis lefidiic dm ma JIW uifeihoii issiiltri in hi-^v- ot peptide bmdur.
iniimuie eri<?!»i}e mid pioaei^siou to Pioimiient. ruhent-ejqju.-ed ^tm^tiucs yitlini these pqjfides nia) jjaitieipate ui geiiejntuig T -.'.-li
le^pon^'es; to UIe '̂e mmimiuiluaiiiiauf epitopes:' h i the HLA-B ' i^O? complex vvitli fin NP.^S.-'-.-'Pl. the amino !it.id ^iile tliaui-i of lesidiu-
4- " and S me .ioh'eiit-e?q[)osed wliilstm the WP- dec<imei. the inam-eliainhulse? into the f:ohent a i o m i d P " Tlnr;. HLA-B'2~U5
pi-e^enhi i.ualpeptides m a laiige of coidroiiiutiou? TctiJUienc suiindcxc:; of HLA-B'2~i.i5 \%"ith the MIS' and flu but not EB^ pcjjlije-
b'jmid >hon«lv to the lollci-Ig-like if icptoi (LIRKiI*Ll Subshtntujn o£EB"\' PS ^ntainate to tlueonuie allowed ictosjiitioii by HE3I! i . . l
h i tlie HLA-B '=2~U -̂EB"V" >hiictiii*e the PS diitaniate side cliam is sohcnt-expo'^ed aiid nun' uiliibit KIEL^LfLl biii'fm2 t luou^i
clechn-taht foices See accmnpiiirxTng roninieiitaiy littj> Vix doi oig 10 It l 'C cji 200d2^S~?

Jomiial Em J Iimnimol 2U05 Jan i S .
Anthois He Castio JA
Titie- HLA-Bi" : poitia^mg ininninodoiiiinant \ i ia l epitope?^
Ab^h3i-:t Altliougli die e n sfal stinitnre of HLA-B2~ has been l"Jioi,\ii im :% Ions tune, onh" lecently h.r- e X-isy diffiathon Kfiuke?; of tin.-
mnieenle in coini>lex\\"ifliiii(b-.idn.il peptide? become r^ adable The icpojt ot tliiee -iiKh ^huchues mvolviiiG Mjal ejiitopes that aie
inuminod'inmiant m HLA-B2~-iewtjJc-ted T cell icspoir«es agiTjiist mttxienza, Ep:^tem-B;wj and I I P " ̂ "uit;;cs Mgmhcantly uwplo^"e•• mii
pejcqition of cnhcal asi>eit:< of the ummmologK al and patho^enche lolcs of HLA-B2". uwhidnur U) the niolead.iiba,5i> of its
pephde-buidtHit spetifieit)- and hov." tly>]-; m<hdiUatcd by s:vibt\"].>e pohmoipliisni, (2! die lelnhon^hip between the >tiiii.final snd the
antiseiiic ieatmes of mmwiiiodoniuiant ^TI.TJ epitopes, ^^^ the ba^is fiii loni: teiiii noii-pingie'sion to of m*!. -iiifectefl HLA-B2~I '<

m'friiUials. ami (4) the sbiKtiiial featiiies of niit-tobial peptide? mflueiii-ins N i l leeeptoi eiigaeeiiienf Heie. I disvn,-s the iinpii-:ahons ol
tliih:' mid lebfed studies for the i elegance ofHLA-B2 ' ' in host defense nnd a;; a pathojenehc moleeiile in spuiuh lorn tin itis f>ee
ao-;onipam"in£ nrfide htti>.-'clx doi oigfO f002 eji 2nu425" i4 .

Fig. 4.18. Highlighting search terms in PubMed abstracts

As the output shows, both keywords have been highlighted (blue and
green respectively, as specified in the array of HTML colors).

The complete code for PubMed servlet version 1.3 is shown in Listing
4.3.

Listing 4.3. PubMed Servlet version 1.3

package o r g . j fb.PubMed;

import org.apache.regexp.RE;
import j a v a x . s e r v l e t . S e r v l e t E x c e p t i o n ;
import j a v a x . s e r v l e t . h t t p . H t t p S e r v l e t ;
import j a v a x . s e r v l e t . h t t p . H t t p S e r v l e t R e q u e s t ;

198

import javax.servlet.http.HttpServletResponse;
import java.io.*;
import java.net.URL;
import java.net.URLEncoder;
import java.util.Properties;

public class PubMedServletl_3 extends HttpServlet {
private static final String TITLE = "PubMed Servlet

1_30";
private static final String KEYWORDS = "keywords";
private static final String PUBMED_ARTICLE_LK =

"http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&d
b=pubmed&dopt=Abstract&list_uids=";

private static final String citString =

"http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?cmd=Retrieve&d
b=PubMed&dopt=medline&list_uids=";

private static final RE pmidRE = new RE("PMID: ([0-9]+)
W[PubMed");

private static final String pmidTag = "PMID- ";
private static final String pmidEndTag = "OWN - ";
private static final String titleStartTag = "TI - ";
private static final String titleEndTag = "PG - ";
private static final String abstractTag = "AB - ";
private static final String abstractEndTag = "AD - ";
private static final String firstAuthorStartTag = "FAU

~" /
private static final String authorStartTag = "AU - ";
private static final String authorEndTag = "LA - ";
private static final String srcTag = "SO -";
private static final String medlineEndTag = "</pre>";
private static final String[] COLOR = new

String[]{"blue", "#98cc02", "purple", "red", "#f7dc88"};
private String[] params;

protected void doGet(HttpServletRequest req,
HttpServletResponse res) throws ServletException, lOException
{

StringBuffer html = new StringBuffer();

// 1. Retrieve the user supplied keywords
printHeader(html);
String userKeywords = req.getParameter(KEYWORDS);

if (userKeywords != null) {
params =

userKeywords.replaceAll("\\s*(\\+|((a|A)(N|n)(D|d))|((o|0)(r|
R)))\\s*", " ").split(" ") ;

html.append("
<HR>
");
html.append("You have searched NCBI for the

userKeywords '"

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 199

+ highlight(userKeywords, this.params)
+ " ' . ") ;

// 2. Retrieve the PubMed IDs from abstracts
// matching user supplied keywords.

StringBuffer sbPmids = null;
final String spec =

"http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?dispmax=10&db=
pubmed&cmd=search£iterm="

+ URLEncoder.encode(userKeywords, "UTF-
8");

string errorMes = null;
System.out.println("spec = " + spec);
try {

sbPmids = getPmids(spec);
} catch (lOException ioe) {

ioe.printStackTrace();
errorMes = "

We are

sorry, the system could not retrieve the PubMed IDs using
keyword(s) ""

+ userKeywords + "Squot; with the
URL <PRE>"" + spec + "Squot;<PRE>

";

}

if (errorMes == null) {
if (sbPmids != null) {

String urlAddress = citString +
URLEncoder.encode(sbPmids.toString(), "UTF-8");

StringBuffer abstracts = null;

// 3. Retrieve abstracts corresponding
// to the PubMed IDs

try {
abstracts =

getAbstracts(urlAddress) ;
} catch (lOException ioe) {

ioe.printStackTrace();
errorMes = "

<font

color=red>We are sorry, the system could not retrieve the
abstracts using keyword(s) Squot;"

+ userKeywords + "&guot;
with the URL <PRE>"" + urlAddress +
"Squot;<PRE>

";

}

if (errorMes == null) {
int pmidStart =

abstracts.indexOf(pmidTag);
StringBuffer tmp = abstracts;
html.append("

Articles

found:

\n");
StringBuffer article;

200

tmp.indexOf(medlineEndTag)

pmidStart, endMedline);

medlineEndTag.length()) ;

tmp.indexOf(pmidTag) ;

// 4. Formatt the articles
try {

while (pmidStart != -1) {
int endMedline =

article = getArticle(tmp,

html.append(article) ;

tmp.delete(0, endMedline +

pmidStart =

if (pmidStart != -1) {
html.append("<HR>");

}
}

} catch (Exception e) {
e.printStackTrace();
errorMes = "

<font

color=red><hl>ERROR</hl>
We are sorry, the system could
not retrieve the articles for PMIDs <PRE>""

+ sbPmids +
""<PRE>

" ;

html.append(errorMes);
}

} else {
html.append(errorMes);

}
} else {

html.append("
No abstracts found!");
}

} else {
html.append(errorMes);

}
}

appendBuildProperty(html);
html.append("</BODy></HTML>\n");

// 5. Print the results
res.setContentType("text/html");
PrintWriter out = res.getWriter();
out.print(html);

}

private void printHeader(StringBuffer html) {
html.append("<HTML>") ;
html.append("<HEAD><TITLE>" + TITLE +

"</TITLE></HEAD><BODY>\n");

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 201

html.append("<hl>" + TITLE +
"</hl>\n");

html.append("Please enter a userKeywords to
search on NCBI:

\n");

html.append("<FORM METHOD=GET>\n");
html.append("<INPUT TyPE=TEXT NAME=" + KEYWORDS +

">

\n");
html.append("<INPUT TYPE=SUBMIT VALUE=\"Search

PubMed\">
\n");
html.append("</FORM>\n");

}

private StringBuffer getPmids(String spec) throws
lOException {

BufferedReader reader = new BufferedReader(new
InputStreamReader(new
URL(spec).openConnection().getlnputstream()));

StringBuffer sbPmids = new StringBuffer();
String pmid;
String s = null;

while ((s = reader.readLine()) != null) {
if (pmidRE.match(s)) {

pmid = pmidRE.getParen(1);
sbPmids.append(pmid + " , ") ;

}
}
reader.close();
final int length = sbPmids.length();

if (length > 0) {
sbPmids.delete(length - 1, length);
return sbPmids;

} else {
return null;

}
}

private StringBuffer getAbstracts(String urlAddress)
throws lOException {

BufferedReader citReader =
new BufferedReader(new

InputStreamReader(new
URL(urlAddress).openConnection().getlnputstream()));

StringBuffer absSb = new StringBuffer();

String s;
while ((s = citReader.readLine()) != null) {

absSb.append(s);
}
return absSb;

}

202

private StringBuffer getArticle(StringBuffer tmp, int
pmidstart, int endMedline) {

StringBuffer articleTmp = new StringBuffer();
String pmidl = tmp.substring(pmidStart +

pmidTag.length(), tmp.indexOf(pmidEndTag));

int titleStart = tmp.indexOf(titleStartTag);
int titleEnd = tmp.indexOf(titleEndTag);

if (titleEnd < 0 || titleEnd > endMedline)
titleEnd = tmp.indexOf(abstractTag);

int abstractStart = tmp.indexOf(abstractTag);

if (titleEnd < 0 || titleEnd > endMedline) {
titleEnd = tmp.indexOf(firstAuthorStartTag);

}

if (titleEnd < 0 || titleEnd > endMedline) {
titleEnd = tmp.indexOf(firstAuthorStartTag);

}
String title = null;

if (0 <= titleStart && titleStart < endMedline) {
titleStart += titleStartTag.length();
title = tmp.substring(titleStart,

titleEnd).replaceAll("(\Ss+)", " ") ;
}

int end = tmp.indexOf(abstractEndTag);
String tmpAbstractTag = abstractEndTag;

if (end < 0 || end > endMedline) {
end = tmp.indexOf(firstAuthorStartTag);
tmpAbstractTag = firstAuthorStartTag;

if (end < 0 || end > endMedline) {
end = tmp.indexOf(authorEndTag);
tmpAbstractTag = authorStartTag;

}
}

String article = null;
if (abstractStart + tmpAbstractTag.length() <= end)

{
article = tmp.substring(abstractStart +

tmpAbstractTag.length(), end).replaceAll("(\\s+)", " ") ;
}

int authorStart = tmp.indexOf(authorStartTag);
String authors = null;

if (0 <= authorStart && authorStart < endMedline) {

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 203

authorStart += authorStartTag.length();
int authorEnd = tmp.indexOf(authorEndTag);
authors = tmp.substring(authorStart,

authorEnd).replaceAll(authorStartTag, ",
").replaceAll(firstAuthorStartTag, ", ") ;

}

int srcStart = tmp.indexOf(srcTag);
String journal = null;
if (0 <= srcStart && srcStart < endMedline) {

journal = tmp.substring(srcStart +
srcTag.length(), endMedline);

}

journal

') ;
authors

'No

"No

// Create the output
articleTmp.append("<a href=\"" + PUBMED_ARTICLE_LK

+ pmidl + "\">" + pmidl + "").append("
");
articleTmp.append("<U>Journal</u>: ") ;
articleTmp.append(journal != null

journal listed").append("
");
articleTmp.append("<u>Authors</u>:
articleTmp.append(authors != null

authors listed").append("
");
articleTmp.append("<u>Title</u>: "
articleTmp.append(title != null ?

params) : "No title").append("
");
articleTmp.append("<u>Abstract</u>:
articleTmp.append(article != null ?

highlight(article, params) : "No article").append("
");
return articleTmp;

}

);
highlight(title.

);

private String highlight(String articleText, String[]
terms) {

String highlightedText = new String(articleText);
for (int i = 0; i < terms.length; i++) {

final String term = terms[i];
final char[] chars = term.toCharArray();

// Create the regular expression to find search terms
// irrespective of case

StringBuffer sb = new StringBuffer(" (") ;
for (char c : chars) {
char charUp = Character.toUpperCase(c);
char charLo = Character.toLowerCase(c);

sb.append("(").append(charLo).append("|").append(charUp).appe
nd(")");

}
sb.append(")");
final String regex = """ + sb.toString() +

" I ['~a-zA-Z]" + sb.toString() ;

204

// Replace the text by a HTML FONT tag
// that wraps the term found

RE re = new RE(regex);
highlightedText = re.subst(highlightedText,

"\\\\<font style=\"\\\\+2\" color=\"" + COLOR[i] +
"\">$0",

RE.REPLACE_BACKREFERENCES);
}
return highlightedText;

}

In this Chapter, we have attempted to demonstrate how web applications
can be created using the J2EE JSP and servlets technology based on a
literature search and retrieval service that is indispensable for today's fast
paced scientific research environment. In particular, we created a web
application that provides the same powerful search capabilities provided
by the NCBI PubMed server but further enhanced it by displaying the
abstracts for each of the matching articles right up front and highlighting
the search terms in the abstract. The rationale behind this strategy was that
researchers may find it difficult to recognize the relevance of an article to
their area of research simply by looking at the article title. If the abstract
was displayed and the search terms were highlight and color coded, it
becomes much easier to understand the context in which the abstract is
relevant vis-a-vis the input search terms. This design saves the researcher a
few extra clicks and makes data more readable and useful.

Note: This Chapter uses resources referred to in the Appendix:
Setting up Apache ant and Apache Tomcat.

Summary

The ability to query and mine the rich scientists datasets in PubMed is a
powerful way to further experimental science using a hypothesis driven
research methodology where researchers build on scientific findings
reported by scores of researchers around the world. In this Chapter, we
have demonstrated how to create a web application with Java Servlet/JSP
technology to access PubMed data and how to enhance the functionality
provided by the resource. Processing and presentation of biomedical data
in ways that provide additional benefit for the researcher is a fundamental
contribution of information technologies and it is hoped that this Chapter
has illustrated a small example of how this can be accomplished.

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 205

Questions and Exercises

1. Visit the NCBI PubMed website and become familiar with the
service. Try out searches with different keywords and view the
results using the various available Display (Brief, Abstract,
Citation, XML, etc.), Sort by (Pub Date, First Author, Last
Author, etc.) and Limits (Dates, Type of Article, etc.) options.
Think of ways you can enhance the capabilities of the service from
the user's point-of-view.

2. PubMed abstracts are a powerful source of data on protein-protein
interaction networks. For example, two or more proteins
mentioned in the same sentence within an abstract most likely
interact with or are related to one another in some fashion.
Enhance the PubMed web application we created in the Chapter
by:

a. highlighting gene/protein names mentioned in the abstract
b. hyperlinking protein names to an appropriate annotation

resource or database on the web

One such solution can be based on the use of gene symbols defined by
the HUGO Gene Nomenclature Committee (HGNC). According to HGNC
convention, human gene symbols are designated by upper-case Latin
letters or by a combination of upper-case letters and Arabic numerals, with
some exceptions. For example, the Approved Gene Symbol for the breast
cancer I, early onset gene is BRCAl.

For the second part of the exercise, the NCBI Entrez Gene resource can
be used as an annotation resource. The link to the BRCAl gene on Entrez
Gene, for example, is identified by the following URL:

http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=gene&cmd=Retrieve
&dopt=full_report&list_uids=672

3. Enhance the user interface of the web application to include the
capability to:

a. save selected abstracts on your local machine
b. filter articles by special criteria, for example, limit journals

by name (Science, Nature, etc.)

206

Additional Resources

The Apache Software Foundation - http://tomcat.apache.org

The Apache Jakarta Project - http://jakarta.apache.org/regexp/

The Apache Ant Project - http://ant.apache.org/

Entrez - http://www.ncbi.nlm.nih.gov/Database/index.html

HUGO Gene Nomenclature Committee -
http://www.gene.ucl.ac.uk/nomenclature/

Java Servlet API Specification 2.2 -
http://java.sun.com/products/servlet/download.html

JavaServer Pages [tm] Technology - White Paper -
http://java.sun.com/products/jsp/whitepaper.html

The Java Servlet API White Paper -
http: //j ava. sun. com/products/servlet/whitepaper.html

Java Servlet Technology -
http://java.sun.com/products/servlet/index.jsp

PubMed Help website -
http://www.ncbi.nlm.nih.gov/books/bv.fcgi?rid=helppubmed.chapter.p
ubmedhelp

RFC 2616 - http://www.w3.org/Protocols/rfc2616/rfc2616.html

RFC 3875 - http://www.rfc-archive.org/getrfc.php?rfc=3875

Selected Reading

The HUGO Gene Nomenclature Database, 2006 updates. Eyre TA,
Ducluzeau F, Sneddon TP, Povey S, Bruford EA and Lush MJ. Nucleic
Acids Res. 2006 Jan 1 ;34(Database issue):D319-21.

Facilitating PubMed Searches: JavaServer Pages and Java Servlets 207

Guidelines for human gene nomenclature (1997). HUGO Nomenclature
Committee. White J A, McAlpine PJ, Antonarakis S, Cann H, Eppig JT,
Frazer K, Frezal J, Lancet D, Nahmias J, Pearson P, Peters J, Scott A,
Scott H, Spurr N, Talbot C Jr, Povey S. Genomics. 1997 Oct 15;45(2):468-
71.

Chapter V

Creating a Gene Prediction and BLAST Analysis
Pipeline

introduction

Gene prediction and gene annotation are fundamental aspects of
genome-sequencing projects and discovery research. These activities
involve determination of complete gene structures from the raw DNA
sequence and attributing functions to them, by way of computational
methods, at least as a first step. These methods try to implement an
understanding of the way in which the structural elements such as coding,
non-coding and regulatory elements are organized within genes, to extract
meaningful information from raw nucleotide sequences.

Gene prediction programs, specifically, are designed to recognize
genetic signals that are embedded in DNA sequences to make predictions
about gene structure. We will explore gene prediction programs in more
detail in this Chapter and build an analytic pipeline that will tie gene
prediction and the BLAST application we built in earlier Chapters.

Gene Prediction Programs

Gene prediction methods that rely only on information that is encoded
in the sequence itself to make predictions are called ab initio (Latin: from

210

the beginning) methods. These methods use signals within DNA such as
splice sites, start and stop codons, promoters and terminators of
transcription, polyadenylation sites, ribosomal binding sites, CpG islands,
and various transcription factor binding sites to predict the presence of
exons. ab initio methods such as Genscan rely on probabilistic models
known as Hidden Markov models (HMMs) to discern patterns within
DNA. An HMM models the different states that a DNA sequence can exist
in and the transition probabilities between the states. The different states of
DNA are the ones enumerated above such as promoter, intron, exon etc.
The term 'Hidden' comes from the fact that the sequence itself is visible
but the states are hidden.

DNA Transcription and Translation

Although a detailed treatment of these subjects are out of the scope of
this book, an introduction of the basic concepts in essential to understand
the biology and behavior of the DNA and RNA. We had mentioned the
terms transcription and translation in the last section. Transcription is the
process by which a DNA molecule is copied into an RNA molecule, while
translation is the process by which the RNA sequence is used by the
cellular machinery to synthesize proteins.

Transcription may result in one of three types of RNA: Messenger RNA
(mRNA), transfer RNAs (tRNA) or ribosomal RNA (rRNA). mRNA
molecules serve as 'messengers' that specify the code for the synthesis of
amino acids (during translation) and therefore the name messenger RNA.
tRNAs form covalent attachments to individual amino acids and recognize
the encoded sequences of the mRNAs to allow correct insertion of amino
acids into the elongating polypeptide chain during translation. rRNAs are
assembled together with numerous proteins to form complexes known as
ribosomes. Ribosomes engage mRNAs and form a catalytic domain into
which the tRNAs enter with their attached amino acids. The proteins of the
ribosomes catalyze all of the functions of polypeptide synthesis.

During the process of transcription, the DNA double helix unwinds and
one strand serves as the template for the synthesis of the RNA strand.
Either strand can serve as the template - which strand becomes the
template depends on a combination of transcription initiation and
termination signals such as promoter and enhancer sequences that are
present on the DNA. Transcription is actually a polymerization reaction in

Creating a Gene Prediction and BLAST Analysis Pipeline 211

which individual nucleotides are linked together by an enzymatic reaction
(catalyzed by the enzyme RNA polymerase) into a chain to form RNA.

In nature, these processes are orchestrated in a finely tuned and
regulated manner involving an intricate interplay of a large number of
proteins, which recognize specific signals and patterns on the sequences
they bind. An example is what are known as CpG islands, which are
regions within DNA that often occur near the beginning of genes, where
the frequency of the dinucleotide CG (that is, the nucleotide bases cytosine
and guanine) is more than in the rest of the genome

We had also mentioned exons and introns and these are simply terms
used to refer to regions of DNA that code for or don't code for proteins
respectively. To elaborate, higher organisms (eukaryotes) have what are
called "split genes", that is, a large proportion of their genes are not
continuous linear entities, but instead may be interrupted throughout their
length by sequences that do not code for protein. A piece of DNA may
therefore contain coding sequences with intervening non-coding
sequences. The intervening non-coding segments are called the introns and
do not code for protein. The coding sequences are exons and do code for
protein. For example, the Cystic Fibrosis transmembrane regulator (CFTR)
gene's coding regions (exons) are scattered over 250,000 base pairs of
genomic DNA and is made up of 27 exons. During transcription, introns
are removed from the CFTR gene and exons are pieced together by a
process known as RNA splicing to form a 6100-bp mRNA transcript that is
translated into the 1480 amino acid sequence (the CFTR protein). In
contrast, the 384 nucleotide human pancreatic ribonuclease gene is
intronless and codes for a 128 amino acid protein. A highly schematic
view of the RNA splicing process is show in Fig. 5.1.

212

Exon 1 I

Rtron Intron \nmn

Eson 2

InTW)

Exoa 3 Exon 4

Genomic DNA

Nuclear RWA

RNft

nnRNA

Fig. 5.1: Schematic of RNA splicing

Gene Prediction with Genscan

Genscan is one of the most effective among the many exon prediction
programs to date. In this Chapter, we will build an application that will
allow users to perform Genscan-based predictions on an unknown piece of
DNA and analyze the predicted genes and peptides with BLAST using the
SwingBlast application that we wrote earlier. The rationale to combine the
two programs into this pipeline is simple - once we know that a newly
sequenced stretch of DNA probably contains potential coding regions, we
would like to know what peptides they may code for and what functions
they perform. As we learned in Chapter 2, a BLASTX analysis of a
nucleotide sequence, for example, compares a nucleotide query sequence
translated in all reading frames against a protein sequence database and
produces matches to known proteins. This information in turn provides
clues to the probable function of an unknown peptide sequence. The
integrated Genscan and BLAST pipeline can be used to perform such
functional characterization of newly sequenced DNA fragments.

Genscan was written by Chris Burge and Samuel Karlin at the
Department of Mathematics, Stanford University. Genscan utilizes the
same basic signals described earlier to build complete gene structures (that
is, introns + exons) from human genomic sequences. Specifically, these
include transcriptional, translational and splicing signals (including
elements present in most eukaryotic promoters such as the TATA box and

Creating a Gene Prediction and BLAST Analysis Pipeline 213

cap site), as well as length distributions and compositional features of
exons, introns and intergenic regions. Importantly, Genscan also makes
use of the many substantial differences in gene density and structure based
on GC composition of the human genome. For example, it is known that
gene density in GC rich regions is five times higher than in regions with
moderate GC content and ten times higher in rich AT rich regions. Four
categories of DNA were identified based on their GC content:

l .<43% GC
2.43-51% GC
3. 51-57% GC
4. >57% GC

These are known as isochores. Thus, if the input genomic sequence has
a GC content of 45 % it is said to have an isochore value of 2. ab initio
programs traditionally have been poor at predicting genes in regions
containing multiple genes, especially when present on both DNA strands.
Genscan addresses these problems by using an explicitly double-stranded
genomic sequence model, which has the likelihood of genes occurring on
both DNA strands. Second, while most programs assume the presence of
exactly one complete gene in the input sequence, Genscan treats the more
general case in which the sequence may contain a partial gene, a complete
gene, multiple complete (or partial) genes on either strand, or no gene at
all. A significant difference in Genscan also is the incorporation of splice
donor signal information based on the mechanism of donor splice site
recognition in pre-mRNA sequences by Ul small nuclear
ribonucleoprotein particle (Ul snRNP).

Running Genscan Analyses

Running and interpreting a Genscan analysis is rather straightforward.
Point your browser to the Genscan server at MIT:
http://genes.mit.edu/GENSCAN.html (Fig. 5.2). For this exercise we will
use a 175 kilobase human bacterial artificial chromosome (BAC) with the
accession number AC092818 from NCBI. Genscan has been 'trained' to
work with vertebrate, arabidopsis and maize sequences (Fig. 5.3). Since we
are analyzing a human BAC, we choose the vertebrate option. We will use
the default sub-optimal exon cut-off value of 1 for our purposes. This
value defines the threshold, which determines if exons that do not meet the
criteria (sub-optimal exons) will be shown or not.

214

You can give a sequence name if you are analyzing a large number of
sequences and want to label each output by a unique identifier. In this case,
we will just use the BAC accession number (Fig. 5.4). The program gives
an option to print out the predicted proteins or the predicted proteins along
with their nucleotide sequences. We will choose the latter option (Fig. 5.5).

Fig. 5.2. The Genscan web server

Fig. 5.3. Setting Genscan parameters

Creating a Gene Prediction and BLAST Analysis Pipeline 215

The sequence can be either uploaded or pasted directly in the text box.
Uploading a sequence is more convenient if you are handling very large
sequences, as is the case here (Fig. 5.5). Finally, you can specify an email
address if you want to receive the results via email. We will hit the "Run
Genscan" button and just wait to see the results in the browser. Fig. 5.6 and
Fig. 5.7 show the results of the Genscan analysis.

Analyzing GenScan Output

The GenScan header gives information on the input sequence and the
parameters used such as name, size and isochore classification
(categorization based on GC content) of the sequence, and the matrix used
for the analysis (Humanlso.smat). The body of the analysis consists of the
predicted peptide and the corresponding CDS sequences. As is evident
from the output there were eight predicted peptides in this sequence. The
complete gene structure of each peptide is listed after the header (Table
5.1).

Fig. 5.4. Entering an identifier

216

Table 5.1. Gene structures

The most important aspects f this table are the gene and exon number,
the type of exon, the strand information (+/-), the background and end
positions, the length of each exon in basepairs, the frame and the scores.
The key to the abbreviations is provided at the end of the output (Table
5.2).

Creating a Gene Prediction and BLAST Analysis Pipeline 217

Table 5.2. Abbreviations and explanations

Gn.Ex
Type

S
Begin
End
Len
Fr
Ph
I/Ac
Do/T
CodRg
P
Tscr

gene number, exon number (for reference)
Init = Initial exon (ATG to 5' splice site)
Intr = Internal exon (3' splice site to 5' splice site)
Term = Terminal exon (3' splice site to stop codon)
Sngl = Single-exon gene (ATG to stop)
Prom = Promoter (TATA box / initation site)
PlyA = poly-A signal (consensus: AATAAA)
DNA strand (+ = input strand; - = opposite strand)
beginning of exon or signal (numbered on input strand)
end point of exon or signal (numbered on input strand)
length of exon or signal (bp)
reading frame (a forward strand codon ending at x has frame x mod 3)
net phase of exon (exon length modulo 3)
initiation signal or 3' splice site score (tenth bit units)
5' splice site or termination signal score (tenth bit units)
coding region score (tenth bit units)
probability of exon (sum over all parses containing exon)
exon score (depends on length, I/Ac, Do/T and CodRg scores)

Each pair of peptide and CDSs (as shown below for the first set) are in
Fasta format and have unique identifiers where the sequences are
numbered sequentially.

>giIGENSCAN_predicted_peptide_l|325_aa
MALISFTSPFNFIGKKSWQCITEAGFDKVDETIIFVISQSSRNVIVGEFLQDPCQGLPL

L
KDLSSKQAANLFPWQRMEAVACDILLIMQPGHGQPAFLQGMSSRLSGAAEQVGSWSMRS

Q
RHSLLWSVPEPVQQAGFLFPEALQSAGCFLPSNIGLQVLQFWTLGLTSVVCQGLSGLWP

Q
lEGCTVGFSTFEVLGLGLASLLLSLQTAYCGTSPCDHSSSLSDSKAAVLENIGLLPLTH

L
SECSRGGTQTGISGLKTELGAKVARVCQAEYGGESHAEREFWTPTEESLRVYKRGLISS

A
SGISVDHGSLPEGLTKTFIPEGYEP

>giIGENSCAN_predicted_CDS_l|97 8_bp
atggccctaatcagttttacatctccgtttaattttattggaaagaagagctggcaatgc
atcacagaggccggctttgacaaagtggatgaaacaattatcttcgttatcagccaaagc
agtagaaatgtgatagttggggaatttttgcaggacccatgccagggcttacctctgcta
aaggatttgtcctcaaagcaggcagcaaatctgttcccttggcagaggatggaagccgtg
gcttgtgacattctcctgataatgcagccaggccacgggcagccagcatttctgcagggg
atgagctccaggctcagtggggcagcagagcaagtggggagctggtccatgaggagtcag
cgtcattccttgctgtggtctgttcctgaaccagtccaacaggctggcttcctgttccca
gaagccctccaaagtgctggatgcttcctgccatcgaacattggactccaagttcttcag
ttttggactcttggacttacatcagtggtttgccagggactctcaggcctttggcctcag

218

attgaaggctgcactgtcggcttctctacttttgaggttttgggactcggactggcttcc
ttgctcctcagcttgcagacagcctattgtgggacttcaccttgtgatcattccagcagc
ctttcggattccaaagcggctgtcctggaaaatatagggctccttccactaac6cacctc
tctgaatgcagcagaggtggaacccagacagggatcagtgggttaaagacagagctggga
gccaaggtagccagagtttgccaggcagagtatggcggagagagccacgcagagagagaa
ttctggacacctacggaggaatctcttcgagtatataaaagaggactgatcagcagtgca
tcaggtatctctgttgatcatggttctttacccgaaggactgactaaaacctttattcct
gaagggtatgaaccatag

Fig. 5.5. Printing peptides and the corresponding coding sequences (CDS)

Fig. 5.6. Uploading the BAC sequence

Creating a Gene Prediction and BLAST Analysis Pipeline 219

Fig. 5.7. Genscan output: Header information

Fig. 5.8. Genscan output: predicted sequences

220

Creating SwingGenscan

The swingGenScan application is composed of four packages as
described below:

• org. j f b. genscan: contains the Genscan API that provides a framework
for a Genscan implementation. It makes the implementation
more flexible by allowing us to optimize, thread, or queue requests and
perform other manipulations without having to change the whole
application; the way the implementation works is transparent to the
application.

• org.jfb.jgenscan: a Genscan implementation of the framework
defined by the org. j f b. genscan package.

• org. j fb .u t i i : contains classes for performing operations such as
extracting the peptide and genes from a Genscan prediction.

• org. jfb.swinggenscan: contains all the classes to build the
SwingGenScan application.

• GenScanResult: Contains the parsed peptide and the gene predictions.
• ResultDialog: a JDialog window that displays the result of Genscan

operation. In this window, users can select one or more sequences to
place into the BLAST pipeline using swingBlast.

• SwingGenScan: the main application window where users can select the
parameters for running a Genscan prediction against a chosen nucleotide
sequence

The goal of this Chapter is to create a gene prediction and annotation
pipeline which enables a user to perform gene prediction followed by
further downstream analysis of the predicted gene and peptide sequences
using BLAST. SwingGenScan uses SwingBlast to send Genscan predicted
sequences for BLAST analysis. To enable this, we have modified
SwingBlast version 2.5 that we created in Chapter 3 and separated the
functionality provided by that application into four packages that we will
use in SwingGenScan:

• org. j fb.blast : provides the BLAST API

• org. jf b. jqblast: provides an implementation of the BLAST API

• o rg . j fb .u t i i : contains classes that provide functions that can be
shared by more than one application (to enable future code reuse). For
instance, the class QueryHelper in this package contains two methods

Creating a Gene Prediction and BLAST Analysis Pipeline 221

(sendQuery and postQuery) to send GET or POST HTTP requests and
the HTML result back.

org. jfb.swingblasta: is the new refactored SwingBlast application.
Since this is a major change, we have named this version 3.

The four classes can be packaged into a jar file called swingbiast . jar.
The jar file can serve as a library whose functionality can be used like any
other Java library by placing it in the Java classpath. The structure of the
SwingGenScan application is shown in Fig. 5.9.

SwingGenScan
L •src

L_ org
jfb

genscan
- GenScan.jawa

" GenScanException.java

GenScanManager.java

jgenscan

JGenScan

swinggenscan

GenScanResult
ResultDialog
SwingGenScan

util

Helper

Fig. 5.9. The SwingGenScan application structure

Writing the Code for SwingGenScan

The org. j f b. genscan package contains the following Java classes:

GenScan.Java

GenScanException.java, and

222

GenScanManager.j ava

As described earlier, this package contains the API that provides a
framework for a Genscan implementation. Let's look at the code for the
first Java class GenScan located in the file Genscan .Java (Listing 5.1).

Listing 5.1. Code for Java class GenScan

package o rg . j fb .genscan ;

import java .u t i l .HashMap;
import j a v a . u t i l . O b s e r v a b l e ;

publ ic a b s t r a c t c l a s s GenScan extends Observable {
publ ic a b s t r a c t Object submitQuery(Map parameters)

throws GenScanException;

publ ic a b s t r a c t Object reques tResul t (Objec t i d e n t i f i e r)
throws GenScanException,

I l legalArgumentException;
}

When we run a Genscan analysis, we would like to know the status of
the Genscan operation - has the request been submitted and if so, is the
sequence currently in process, or has it encountered an error? The Genscan
class provides a simple way of being notified of events through the use of
the observer pattern as described in Chapter 2.

Next we define the GenScanManager class, whose purpose is to provide
an instance of GenScan (Listing 5.2). As we'll see later, an implementation
of the GenScan API will call the GenScanManager's register method to
register itself as the default GenScan implementation.

Remember, we don't want to modify our code if we change the
GenScan implementation to provide a multi-threaded, queued and multi-
server implementation in the future. So to load our GenScan
implementation we just pass the full name of the Java class to load,
through the JVM system property (defined as "genscanClass.driver") using
the - D option as explained earlier in Chapter 3. Another way is to call
Class.forName ("full name of the Java class") to have the Java
classloader locate the implementation and load it into the JVM. The reader
will notice that the createGenScan() is thread safe, which means that a
different instance of the Java GenScan implementation will be loaded for

Creating a Gene Prediction and BLAST Analysis Pipeline 223

each thread and therefore it will not be a problem while accessing shared
resources. For the same reason, multiple Genscan analyses can be run in a
multi-threaded application. To return an instance of the implementation of
GenScan we then use the Java reflection API (defined in java.lang.reflect
package) to retrieve the constructor and create a new object of the
GenScan implementation here called Jgenscan.

Listing 5.2. GenScanManager.Java

package o rg . j fb .genscan ;

public class GenScanManager {
private static String genscanClass = null;
private static boolean initialized = false;

public static synchronized void register(GenScan
genscan) {

genscanClass = genscan.getClass().getNaine();
initialized = true;

}

private static void loadlnitialDrivers() {
final String driver =

System.getProperty("genscanClass.driver");
if (driver == null)

return;

try {
System.out.printIn("GenScanManager.Initialize:

loading " + driver);
Class.forName(driver);

} catch (Exception e) {
System.out.printIn("GenScanManager.Initialize:

load failed: " + e);
}

}

public static GenScan createGenScan() throws
GenScanException {

if (Unitialized) {
initialized = true;
loadlnitialDrivers();

}
if (genscanClass == null)

throw new GenScanException("There is no driver
configured! "

+ "Please use genscanClass.driver Java
property or Class.forName" +

" to load the driver class.");
try {

224

// In a multi thread environment we need to
//make sure that the class is loaded

final Class aClass = (Class)
Class.forName(genscanClass, true,

Thread.currentThread().getContextClassLoader());
return (GenScan) aClass.getConstructor(new

Class[]{}).newlnstance(new Object[]{});
} catch (Exception e) {

throw new GenScanException(e);
}

}
}

Next, we need to be able to get an instance of GenScan, or more
specifically, an instance of the implementation that fulfills our Java
GenScan declaration requirements. The design of the GenScan framework
provided by the API we wrote is to make the implementation transparent
to the user. For example, the implementation uses an HTTP server to run
the Genscan analysis and to retrieve the result. This entire process is
shielded from the user. The user simply calls the submitQuery method
with a Map of parameters and requests a result using an object identifier.

The code below loads the class for the Genscan implementation:

(Class aClass = (Class) Class.forName(genscanClass, t r u e .

Thread .cur ren tThread() .ge tContex tClassLoader ()) ;
r e tu rn (GenScan) aClass .getConst ructor(new

Class[]{}) .newlnstance(new Objec t []{}) ;

We use Java reflection to retrieve a class instance of the class defined
by the name genscanClass by calling the static method forName from
class Class and we cast it to class. Then we use the class instance we
retrieved to construct an instance of that class by calling the
getConstructor method that we cast also to type GenScan. Casting an
object means forcing the object to be of a certain Java type. Of course, the
type one wants to cast an object into must be one that the object inherits
from. The new type can be an interface, an abstract class or a super class
type. Casting is done in Java by putting the new type in parentheses before
the object as shown above.

Note the static method in GenScanManager. Java:

Creating a Gene Prediction and BLAST Analysis Pipeline 225

public static synchronized void register(GenScan genscan) {
genscanClass = genscan.getClass().getNaine();
initialized = true;

}

This method allows any implementation to register itself to the
GenScanManager by calling it with an instance of an implementation of
GenScan in a Static statement. The method just stores the full Java class
name of the implementation of GenScan by using Java reflection
(ge tc iasso method) on an object. The name will be then used by the
createGenScan() method to provide an instance of GenScan.

Finally, the GenScanException class handles any exceptions that may
arise during the operation of Genscan (Listing 5.3).

226

Listing 5.3. GenScanException class

package o rg . j fb .genscan ;

public class GenScanException extends Exception {
public GenScanException() {
}

public GenScanException(String message) {
super(message);

}

public GenScanException(String message, Throwable
cause) {

super(message, cause);
}

public GenScanException(Throwable cause) {
super(cause);

}
}

Next we implement Genscan as shown in Listing 5.4. In the JGenScan
class, the reg is te r () method is called by createGenScan() in case no
Java class name for any implementation has been provided. Next the
method loadinit ialDrivers() will attempt to first retrieve the full Java
class name of the implementation by looking at a JVM system property
passed through the JVM as argument using the —D option as explained
before:

Java —DgenscanClass.driver=org.jfb.jgenscan.JgenScan

The line above will define in the system the property
genscanClass . d r i v e r with the value org . j f b . jgenscan. JgenScan. We
get the system property back in the Java code like this:

System.getProperty("genscanClass.driver");

If the value found is not null, the method will then attempt to load the
class through a class method call - class.forName(). If JGenScan is not
in the Java classpath, then the Java classloader will fail to load the class
and will throw a ciassNotFoundException. So it is important to make
sure that you declare JGenScan in the Java classpath. The method
forName() has the effect of initializing the class implementing GenScan.
Part of the initialization is to run the static statements and set up the static
fields or constants.

Creating a Gene Prediction and BLAST Analysis Pipeline 227

Listing 5.4. The JGenScan class

package o r g . j f b . j g e n s c a n ;

import org.jfb.genscan.GenScan;
import org.jfb.genscan.GenScanException;
import org.jfb.genscan.GenScanManager;
import org.jfb.util.QueryHelper;

import Java.io.UnsupportedEncodingException;
import Java.net.URLEncoder;
import java.util.ArrayList;
import java.util.Collection;
import java.util.HashMap;

public class JGenScan extends GenScan {
private static final String GENSCAN_HOSTNAME

"genes.mit.edu";
private static final String GENSCAN_PATH = "/cgi-

bin/oldgenscanw.cgi";
private static final int GENSCAN_PORT = 80;
private static final String GENSCAN_URL = "http://" +

GENSCAN_HOSTNAME + ":" + GENSCAN_PORT + "/" + GENSCAN_PATH;

Static {
System.out.println("Registering " +

JGenScan.class);
GenScanManager.register(new JGenScan());

}

private static Map reqIdToResultFileName = new
HashMap();

private Collection currentRunningGenScan = new
ArrayList();

private static final int NUMBER_OF_SECOND = 3000;

public Object submitQuery(Map parameters) throws
GenScanException {

final String urlapiQuery =
createUrlapiQuery(parameters);

setChanged();
notifyObservers("Submitting the job to the server

with query\n" + urlapiQuery);
Runnable runnable = new Runnable() {

public void run() {
Object res;
try {

res
QueryHelper.sendQuery(urlapiQuery, GENSCAN_URL, true);

} catch (Throwable e) {
res = new GenScanException("Problem

with URL " + GENSCAN_URL, e);

228

}
final String key = "" + this.hashCode();
synchronized (reqIdToResultFileName) {

System.out.println("Storing the result

reqIdToResultFileName.put(key, res);
}

}
};
new Thread(runnable).start();
final String key = "" + runnable.hashCode();
currentRunningGenScan.add(key);
return key;

}

public Object requestResult(Object identifier) throws
GenScanException {

if (1CurrentRunningGenScan.contains(identifier))
throw new IllegalArguinentException(identifier +

" has no corresponding result!");
Map tmp = null;
boolean hasFinished = false;
int ct = 0;
synchronized (this) {

while (!hasFinished) {
tmp = new HashMap(reqIdToResultFileName);
hasFinished = tmp.containsKey(identifier);
if (hasFinished) {

reqIdToResultFileName.remove(identifier);
break;

}
setchanged();
notifyObservers("Waiting " +

NUMBER_OF_SECOND

waiting time: "

"s).");

+ " seconds before re-trying (total

+ (ct += NUMBER_OF_SECOND) +

try {
wait(NUMBER_OF_SECOND);

} catch (InterruptedException e) {
e.printStackTrace();

}
}

}
final Object o = tmp.get(identifier);
if (o == null) return null;
if (o instanceof Throwable)

throw new GenScanException("Embedded
exception", (Throwable) o);

return o;
}

Creating a Gene Prediction and BLAST Analysis Pipeline 229

private String createUrlapiQuery(Map parameters) {
StringBuffer query = new StringBuffer();
try {

final Object org = parameters.get("organism");
final Object nam = parameters.get("name");
final Object sub

parameters.get("subOptExonCutoff");
final Object dis

parameters.get("displayOption");
query.append("-

s=").append(URLEncoder.encode((String)
parameters.get("sequence"), "UTF-8"));

if (org != null) {
query.append("&-

o=").append(URLEncoder.encode((String) org, "UTF-8"));
}
if (nam != null) {

query.append{"&-
n=").append(URLEncoder.encode((String) nam, "UTF-8"));

}
if (sub != null) {

query.append("&-
e=") .append(URLEncoder.encode((String) sub, "UTF-8"));

}
if (dis != null) {

query.append(" &-
p=").append(URLEncoder.encode((String) dis, "UTF-8"));

}
} catch (UnsupportedEncodingException uee) {

uee.printStackTrace();
}
return query.toString();

}
}

Note the following piece of code in Listing 5.4:

new Thread(runnable).start();
final String key = "" + runnable.hashCode();
currentRunningGenScan.add(key);
return key;

Here, we are threading the process to be able to run more than one query
without having to wait for the first one to finish. Also because we're
running in a multi-threaded environment we want to synchronize the Map
called reqidToResultFileName, to safely save the right key with the right

230

result and to avoid more than one thread to modify the Map at the same
time that could potentially populate the Map with wrong data.

After we have submitted the query, we retrieve the result by calling the
reques tResu l t () method. That method will return only when the result is
available. One has to make sure that a call to that method is not executed
in the event-dispatching thread, because that will block the repaint of the
application.

The method reques tResu l t () described in Listing 5.4 first checks that
the request identifier is a valid argument. If invalid, the method will throw
an exception that would allow us to track down multiple calls to the
method with the same argument that could probably imply an infinite loop.
We are protecting multiple threads from accessing the same block when
we are checking if the request is ready, by surrounding the block with a
synchronized () block. The synchronization is on the current object "this"
calling that method. That means that the JVM will set a lock (a unique
token) on the current object to the thread that first entered the block. Then,
until the thread inside that block releases the lock, any other threads
waiting to run that piece of code will have to wait for the lock to be
released. The actual processes are transparent to the developer because of
the use of the synchronized Java keyword.

The result of the Genscan operation is stored in the GenScanResult
object. This is essentially the predicted peptide and gene sequences and
any additional data about the search that the user may wish to save such as
the name of the server, the Genscan parameters used for the prediction as
well as the time taken to execute the prediction etc. The code for the
GenScanResult class is shown in Listing 5.5.

Creating a Gene Prediction and BLAST Analysis Pipeline 231

Listing 5.5. GenScanResult.Java

package org.jfb.swinggenscan;

public class GenScanResult {
private String[] peptideGene = null;

public void setPeptideAndGene(String[] pepGene) {
peptideGene = pepGene;

}

public String[] getPeptideGene() {
return peptideGene;

}

Next, the ResultDialog c l a s s takes a GenScanResult object and
displays its content.

public void showResult(GenScanResult result) {
String[] pepGene = result.getPeptideGene();
if (pepGene == null) {

list.setCellRenderer(new
DefaultListCellRenderer());

list.setListData(new String[]{"No Results
Found"});

} else {
list.setCellRenderer(new MyListCellRenderer());
list.setListData(pepGene);

}
}

The ResultDialog class also allows the user to run additional
analyses to be run on the predicted gene and peptide sequences. In this
case, we will add a functionality to perform a BLAST search on user
selected Genscan predictions. To do that, we add a check box against each
predicted sequence and a button called "Run Blast" at the bottom. Once
the user selects a sequence and hits the "Run BLAST" button, the
SwingBlast application we created earlier is invoked with the selected
sequences in the text area of the SwingBiast application.

runBlastButton = new JButton("Run B l a s t ") ;
runBlastButton.addActionListener(new

Act ionLis tener () {
publ ic void actionPerformed(ActionEvent e) {

i f (! l i s t . i sSe lec t ionEinp ty ()) {

S w i n g B l a s t S . l a u n c h (l i s t . g e t S e l e c t e d V a l u e s () [0] . t o S t r i n g ()) ;

232

}

The code for the ResultDialog class is shown in Listing 5.6.

Listing 5.6. ResultDialog.java

package org.jfb.swinggenscan;

import org.j fb.swingblastS.SwingBlastS;
import javax.swing.*;
import javax.swing.event.ListSelectionEvent;
import javax.swing.event.ListSelectionListener;
import j ava.awt.*;
import j ava.awt.event.ActionEvent;
import Java.awt.event.ActionListener;

public class ResultDialog extends JDialog {
private static final Dimension BD_PREF_SIZE = new

Dimension(53 0, 4 60);
private JList list;
private JButton runBlastButton;

public ResultDialog(Frame owner) throws
HeadlessException {

super(owner);
setTitle("GenScan Result Dialog");

}

public void init() {
list = new JList();

list.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);
list.addListSelectionListener(new

ListSelectionListener() {
public void valueChanged(ListSelectionEvent e)

{
if (!e.getValuelsAdjusting()) {

runBlastButton.setEnabled(!list.isSelectionEmpty());
}

}
});
JScrollPane scrollPaneArea = new JScrollPane(list);
scrollPaneArea.setPreferredSize(new Dimension(500,

400));
JPanel panel = new JPanel();
panel.setLayout(new BorderLayout());
panel.add(scrollPaneArea, BorderLayout.NORTH);

JPanel buttonPane = new JPanel();
buttonPane.setLayout(new BoxLayout(buttonPane,

Creating a Gene Prediction and BLAST Analysis Pipeline 233

BoxLayout.LINE_AXIS));
buttonPane.add(Box.createHorizontalGlue());
buttonPane.add(Box.createRigidArea(new

Dimension(10, 0))) ;

runBlastButton = new JButton("Run Blast");
runBlastButton.addActionListener(new

ActionListener() {
public void actionPerforined(ActionEvent e) {

if (!list.isSelectionEmpty()) {

SwingBlastS.launch(list.getSelectedValues()[0].toString());
}

}
});
runBlastButton.setSize(new Dimension(80, 20));
runBlastButton.setEnabled(false);
buttonPane.add(runBlastButton);
panel.add(runBlastButton, BorderLayout.SOUTH);
getContentPane().add(panel);
setSize(BD_PREF_SIZE);
setVisible(true);

}

public void showResult(GenScanResult result) {
String[] pepGene = result.getPeptideGene();
if (pepGene == null) {

list.setCellRenderer(new
DefaultListCellRenderer());

list.setListData(new String[]{"No Results
Found"});

} else {
list.setCellRenderer(new MyListCellRenderer());
list.setListData(pepGene);

}
}

private static class MyListCellRenderer implements
ListCellRenderer {

public Component getListCellRendererComponent(JList
list, final Object value, int index, boolean isSelected,
boolean cellHasFocus) {

JPanel jPanel = new JPanel();
jPanel.setLayout(new BorderLayout());
final JTextArea textArea = new

JTextArea(value.toString());
final Font sf = textArea.getFont();
Font f = new Font("Monospaced", sf.getStyle(),

sf.getSize());
textArea.setFont(f);
textArea.setLineWrap(true);
final JCheckBox comp = new JCheckBox();

234

coinp.setSelected(isSelected) ;
jPanel.add(coinp, BorderLayout.WEST);
jPanel.add(textArea, BorderLayout.CENTER);
return jPanel;

The SwingGenScan User Interface

The application interface is created using swing libraries. Listing 5.7
shows the code for the swingGenScan application.

Listing 5.7. SwingGenScan user interface

package org . j fb .swinggenscan;

import org. jfb.genscan.GenScanf-
import org.jfb.genscan.GenScanException;
import org.jfb.genscan.GenScanManager;
import org.jfb.util.Helper;

import javax.swing.*;
import j avax.swing.event.DocumentEvent;
import j avax.swing.event.DocumentListener;
import j ava.awt.*;
import Java.awt.event.ActionEvent;
import Java.awt.event.ActionListener;
import java.util.HashMap;
import Java.util.Observable;
import Java.util.Observer;

public class SwingGenScan extends JFrame {
private static final String APP_NAME = "SwingGenScan";
private static final String APP_VERSION = "Version

1.0";
private static final String STATUS_LABEL = "Status: ";
private static final String STATUS_READY = "Ready";

private static final Dimension LABEL_PREFERRED_SIZE =
new Dimension(127, 16);

private static final Dimension COMBO_PREFERRED_SIZE =
new Dimension(60, 25);

private static final Dimension CP_PREF_SIZE = new
Dimension(450, 410);

private static final String[] ORGANISMS =
new String[]{"Vertebrate", "Arabidopsis",

Creating a Gene Prediction and BLAST Analysis Pipeline 235

"Maize"};
private static final String[] PRINT_OPTIONS =

new String[]{"Predicted peptides only",
"Predicted CDS and peptides"};

private static final String[]
SUBOPTIMAL_EXON_CUTOFF_VALUES =

new String[]{"1.00", "0.50", "0.25", "0.10",
"0.05", "0.02", "0.01"};

private JComponent newContentPane;
private JTextArea sequenceArea;
private JScrollPane scrollPaneArea;
private JLabel statusLabel;
private JLabel statusText;

private JComboBox organisms;
private JComboBox printOptions;
private JComboBox exonCutoffs;

private JButton clearBtn, submitBtn;

private JMenuItem aboutltem;
private JMenuItem quitltem;

public SwingGenScan() {
super();
seqFormInit();

}

private void seqFormlnit() {
setTitle(APP_NAME);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
newContentPane = new JPanel();
newContentPane.setOpaque(true);
newContentPane.setLayout(new BorderLayout());

getContentPane().add(newContentPane)
setContentPane(newContentPane);

// Create the menu bar
JMenuBar menu = new JMenuBar();
JMenu swingBlastMenu = new JMenu(APP_NAME);
quitltem = new JMenuItem("Quit");
swingBlastMenu.add(quitltem);
menu.add(swingBlastMenu);

JMenu helpMenu = new JMenu("Help");
aboutltem = new JMenuItem("About");
heIpMenu.add(aboutItem);
menu.add(helpMenu);
setJMenuBar(menu);

236

// Create the sequence pane
JPanel sequencePanel = new JPanel();
JLabel sequence = new JLabel("Sequence");
sequenceArea = new JTextArea();
final Font sf = sequenceArea.getFont();
Font f = new Font("Monospaced", sf.getStyle(),

sf.getSize());
sequenceArea.setFont(f);
sequenceArea.setLineWrap(true);
scrollPaneArea = new JScrollPane(sequenceArea);
scrollPaneArea.setPreferredSize(new Dimension(300,

200));

sequencePanel.setLayout(new
BoxLayout(sequencePanel, BoxLayout.LINE_AXIS));

sequencePanel.add(sequence);
sequencePanel.add(Box.createRigidArea(new

Dimension(10, 0)));
sequencePanel.add(scrollPaneArea);

sequencePanel.setBorder(BorderFactory.createEmptyBorder(10,
0, 10, 0));

statusLabel = new JLabel(STATUS_LABEL);
statusLabel.setPreferredSize(new Diinension(50,

30));
statusText = new JLabel(STATUS_READY);
JPanel statusPanel = new JPanel();

statusPanel.setBorder(BorderFactory.createEmptyBorder(0, 5,
5, 5));

StatusPanel.setLayout(new BorderLayout()) ;
StatusPanel.add(StatusLabel, BorderLayout.WEST);
statusPane1.add(statusText, BorderLayout.CENTER);

// Lay out the buttons from left to right

JPanel buttonPane = new JPanel();
submitBtn = new JButton("Submit");
clearBtn = new JButton("Clear");

buttonPane.setLayout(new BoxLayout(buttonPane,
BoxLayout.LINE_AXIS));

buttonPane.add(Box.createHorizontalGlue());
buttonPane.add(Box.createRigidArea(new

Dimension(10, 0)));
buttonPane.add(clearBtn);
buttonPane.add(submitBtn);

JPanel jPanel = new JPanel();
jPanel.setLayout(new BorderLayout()) ;
jPanel.setBorder(BorderFactory.createEmptyBorder(0,

10, 10, 10));

Creating a Gene Prediction and BLAST Analysis Pipeline 237

jPanel.add(sequencePanel, BorderLayout.NORTH);
jPanel .add(createPrograinPanel(),

BorderLayout.CENTER);
jPanel.add(buttonPane, BorderLayout.SOUTH);

newContentPane.add(jPanel, BorderLayout.CENTER);
newContentPane.add(statusPanel,

BorderLayout.SOUTH);
newContentPane.setPreferredSize(CP_PREF_SIZE);
enableFunctions(false);
// Display the window
pack();
Dimension screenSize =

Toolkit.getDefaultToolkit().getScreenSize();
setLocation((screenSize.width - CP_PREF_SIZE.width)

/ 2,
(screenSize.height - CP_PREF_SIZE.height) /

2);
setVisible(true);
addListeners() ;

}

private JPanel createProgramPanel() {
JPanel organismPanel = new JPanel();
JLabel organismLabel = new JLabel("Organism");

organismLabel.setPreferredSize(LABEL_PREFERRED_SIZE);
organisms = new JComboBox(ORGANISMS);
organisms.setMaximumSize(COMBO_PREFERRED_SIZE);
organismPanel.setLayout(new

BoxLayout(organismPanel, BoxLayout.LINE_AXIS));
organismPanel.add(organismLabel);
organismPanel.add(Box.createRigidArea(new

Dimension(10, 0)));
organismPanel.add(organisms);
organismPanel.add(Box.createRigidArea(new

Dimension(5, 0)));
organismPanel.add(Box.createHorizontalGlue());

JPanel exonCutoffPanel = new JPanel();

JLabel exonCutoffLabel = new JLabel("Suboptimal

Exon Cuttoff"),•

exonCutof fLabel.setPreferredSize(LABEL_PREFERRED_SIZE) ;
exonCutoffs = new

JComboBox(SUBOPTIMAL_EXON_CUTOFF_VALUES);
exonCutoffs.setMaximumSize(COMBO_PREFERRED_SIZE);
exonCutoffPanel.setLayout(new

BoxLayout(exonCutoffPanel, BoxLayout.LINE_AXIS));
exonCutoffPanel.add(exonCutoffLabel);
exonCutoffPanel.add(Box.createRigidArea(new

Dimension(10, 0)));
exonCutoffPanel.add(exonCutoffs);

238

exonCutoffPanel.add(Box.createRigidArea(new
Diinension(5, 0)));

exonCutoffPanel.add(Box.createHorizontalGlue());

JPanel printOptionsPanel = new JPanel();
JLabel printOptionsLabel = new JLabel("Print

Options") ;

printOptionsLabel.setPreferredSize(LABEL_PREFERRED_SIZE);
printOptions = new JCoitiboBox(PRINT_OPTIONS) ;
printOptions.setMaxiniuinSize(COMBO_PREFERRED_SIZE) ;
printOptionsPanel.setLayout(new

BoxLayout(printOptionsPanel, BoxLayout.LINE_AXIS));
printOptionsPanel.add(printOptionsLabel);
printOptionsPanel.add(Box.createRigidArea(new

Dimension(10, 0)));
printOptionsPanel.add(printOptions);
printOptionsPanel.add(Box.createRigidArea(new

Diinension(5, 0))) ;
printOptionsPanel.add(Box.createHorizontalGlue());

JPanel paramPanel = new JPanel();
paramPanel.setLayout(new BoxLayout(paramPanel,

BoxLayout.PAGE_AXIS)) ;

5)));

5)));

5))) ;

paramPanel.add(organismPanel);
paramPanel.add(Box.createRigidArea(new Dimension(0,

paramPanel.add(exonCutoffPanel);
paramPanel.add(Box.createRigidArea(new Dimension(0,

paramPanel.add(printOptionsPanel);
paramPanel.add(Box.createRigidArea(new Dimension(0,

return paramPanel;

}

private void addListeners() {
quitltem.addActionListener(new ActionListener() {

public void actionPerformed(ActionEvent e) {

System.exit(0);

}
});

aboutltem.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

JOptionPane.showMessageDialog(org.j fb.swinggenscan.SwingGenSc
an.this, APP_NAME + " " + APP_VERSION,

"About " + APP_NAME,
JOptionPane.INFORMATION_MESSAGE);

}

Creating a Gene Prediction and BLAST Analysis Pipeline 239

});

clearBtn.addActionListener(new ActionListener() {
public void actionPerforined(ActionEvent e) {

sequenceArea.setText("");
enableFunctions(false);
statusText.setText(STATUS_READY);

}
});

submitBtn.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {

Runnable runnable = new Runnable() {
public void run() {

GenScan genScan = null;
try {

Class.forNaine("org.jfb.jgenscan.JGenScan");
genScan =

GenScanManager.createGenScan();
} catch (ClassNotFoundException

cnfe) {
cnfe.printStackTrace() ;

} catch (GenScanException gse) {
gse.printStackTrace();

}
Map param = new HashMap();
param.put("sequence",

sequenceArea.getText());
param.put("organism",

organisms.getSelectedItem());
param.put("subOptExonCutoff",

exonCutoffs.getSelectedItem());
param.put("displayOption",

printOptions.getSelectedItem());
Object requestldentifier = null;
try {

requestldentifier =
genScan.submitQuery(param);

} catch (GenScanException gse) {
gse.printStackTrace();

}
Observer observer = new Observer()

{
public void update(Observable

o, Object arg) {

SwingGenScan.this.statusText.setText(arg.toString());
}

};
genScan.addObserver(observer);
Object text = null;

240

try {
text =

genScan.requestResult(requestldentifier) ;
} catch (GenScanException gse) {

gse.printStackTrace{);
}
final GenScanResult result =

Helper.extractPeptideAndGene(text.toString());
EventQueue.invokeLater(new

Runnable() {
public void run() {

statusText.setText(STATUS_READY);
final ResultDialog

resultDialog = new ResultDialog(SwingGenScan.this);
resultDialog.init();

resultDialog.showResult(result);
}

});
}

};
new Thread(runnable).start();

}
});

sequenceArea.getDocument().addDocumentListener(new
DocumentListener() {

public void insertUpdate(DocumentEvent e) {

enableFunctions(sequenceArea.getText().trim().length() > 0);
}

public void removeUpdate(DocumentEvent e) {

enableFunctions(sequenceArea.getText().trim().length() > 0);
}

public void changedUpdate(DocumentEvent e) {
}

});
}

private void enableFunctions(boolean enabled) {
organisms.setEnabled(enabled);
exonCutoffs.setEnabled(enabled);
printOptions.setEnabled(enabled);

}

public static void main(String[] args) {
SwingUtilities.invokeLater(new Runnable() {

public void run() {

Creating a Gene Prediction and BLAST Analysis Pipeline 241

new SwingGenScan();

}) ;

The swingGenScan user interface is shown in Fig. 5.10.

™?/ . . . : , , . • • . . . ; , . . , ; ;

SwingGenScan Help

1

Si'riiifiii'f

Oi Hdriisrti

Mlllli|llllll.lll Xlilli Ut...

i'lini (ipiiiiri-i

M<lllis: Kl'̂ iirv

Vertebrate '^

1.00 ' •

Predicted CDS and peptides ' '

Clear

-

Submit

Fig. 5.10. SwingGenScan user interface

After the Genscan prediction has finished, we need to parse the raw
results, which are presented as an HTML page to extract the actual
predicted gene and peptide sequences. This is done through the Helper
class within the o rg . j fb .u t i i package. We have created a separate
package for this to enable developers to use this code in a different
application that requires similar functionality without the need to extract it
from the main application or block of code (Listing 5.8).

Listing 5.8. o rg . j fb .u t i i package

package o r g . j f b . u t i i ;

import org.jfb.swinggenscan.GenScanResult;

242

import java.util.ArrayList;
import java.util.Collection;

public class Helper {
public static GenScanResult

extractPeptideAndGene(String rawHtml) {
final String begin = "Predicted peptide

sequence(s):";
final String end = "Explanation";
String allSequences =

rawHtml.substring(rawHtml.indexOf(begin) + begin.length(),
rawHtml.indexOf(end));

if (allSequences.indexOf("NO PEPTIDES PREDICTED") >
0) {

return new GenScanResult();
}
int beginlndex = allSequences.indexOf('>');
allSequences = allSequences.substring(beginlndex +

1, allSequences.length());
beginlndex = allSequences.indexOf('>');
allSequences = allSequences.substring(beginlndex,

allSequences.length());
final String[] results = allSequences.split("\n");
Collection sequences = new ArrayList();
StringBuffer sb = new StringBuffer();
for (int i = 0; i < results.length; i++) {

final String line = results[i];
if (line.trim().length() == 0) {

sequences.add(sb.toString());
sb = new StringBuffer();

} else {
sb.append(line).append("\n");

}
}
sequences.add(sb.toString());
String[] res = new String[sequences.size()];
sequences.toArray(res) ;
final GenScanResult result = new GenScanResult();
result.setPeptideAndGene(res);
return result;

}
}

Running SwingGenScan

Fig. 5.11 to Fig. 5.14 demonstrate a typical ran of the SwingGenScan
application beginning with the pasting of a sequence - in this case - the
complete sequence of the human chromosome number 8 (GI number
24850538) and the printing of the predicted genes and peptides.

Creating a Gene Prediction and BLAST Analysis Pipeline 243

SwingOenKcan Melp

. - i r i l ^ ' i j I i J j - j l y J i A f t i i l i J l t : . 4 i : o i c 3= .p ie : i f rLi;oD3fo[i ie C, C1CL-.± . ^P i l - ' i l i -C . ' l

: i^/TTCT&TArrC CACaTTTTTTTCTGJ^XTCC A&TTCC A&i!j:.T:C ACATAriTGTGTrrCT;;:K:TC C A,rT

VJ::':^i:AGTCAAGG[:AGAeGGC&Cin'GTCA&TGTGT6ATGA&TGTG[;ASCAACTGTCCCTGSAAGGCAL':

Ti',i-(.;.jLCACCCAGTAGGACTCTTTAAGGACiyLGCAAAGTATCTTCTTCATCTIt:ACATTCCCTCCTGGi-i:

t"."^i,rATTGCTAA&ACTTAAAGCTrrCATTTGTTAACTGAATAATAAAAeTTTGTTTCTCTTTAAAGCA""

\ JLUAGCCATGAGG[7ITCCAGGTATrCTrGCTGGGATGAATCCTriTATTrTAGATATnTCTrCCCT.^.Ji

•; VfT riTTCTTTTCTTrCTTnTAGATGAGGCCATCTrTTATrCACATAGTAAGAGC GGGATrGGAATAfA

: AC ATGGEGAATGAGACAGAGA&CAGGCCT&C CAC CTC CATTTCAGC ATC ATTGCITGGGGAAAGCTGAC

.J .:;-.A'rGGACTC CATC C CAGTCTGTTITCTGC AGGAGCAGGTTCMG5TAAGTATAATnTGTTAATGAi.-ii

iTrTGAATAATGAACATCTTCCACCCATCCTGTTTCTCTTAAGGAGCCATGCAGGCCGCAGGCCCTTGA-

Oi nriiiisiri Vcitclii ;i)i* ' * '

SiiboiJtiirmi [x j t i Cm... 1.00 ^

Print Oinioiis PreilicteiJ CDS ond peptides '

Cliidi Sutirnii

Fig. 5.11. Running SwingGenScan

HAL:?FrSPFNFIGKKSWQCITEA&FDK"/DETIIFVISQSSEHVIVG-EFLQDPCQGLPLL

T.T; r, S Ĵ KQMWL FPIiTQEHE AVACDIL LIHQ P GH&QP AFLQ SHSSRL SG-AJiEQVGSUSMHS G

PK=5LL¥SVPEPYQQAGFLFPEALQSAGCFLPSIIIGLi]YLQFt(iTLC-LTSWCQGLSGL¥PQ

TE:7i:TV&FSTrEVLGLGLASLLL3LQTAYCGTSPCEiH333LSDSKAAyLEHIGLtPLTHL

3E:3r-GGTQTGISGi.KTEI.GAEVAEyCQAEyGGESHAEREFKiTPTEE3LRVyKRGLIS3A

i^GIl^VDHGSLPEGLTKTFIPEGIffiP

> c i C-EMSCAH___pre(licced___CDS_l|978_lrp

•at^gccctaatcagttttacatctccgtttaattttattggaaagaagagctggcaatgc
citTCiragaggccggcCttgacaaagtggatgaaacaattatct-t-cgt-tatcagccaaagc
flf-[i-.af-aaat.gtgatagt.tggggaat.tttt.gcaggacccatgccagggcttacctctgcta
aautjfLtttgtcctcaaagcaggcagcaaatctgttcccttggcagaggatjggaagccgtg
gct.tgcgacactctcctgataatgcagccaggccacgggcagccagcattt.ctgcagggg
at gage tec aggctc agtggggc age agagcaagtggggagctggtc c atgaggagtcag
cgtcattcct.tgctgtggtct.gtt.cctgaaccagtcc aac aggc t ggc t tc c tgt tc c c a
craadccctccaaagtgctggatgcttcctgccatcgaacattggactccaagttcttDag
t.til.tggactcttggactcacat.cagtgg'uttgccagggact.ct.caggcct.'ctggcc'ccag
attgaaggctgcactgtcggcttctctacttttgaggtttt.gggactcggactggctCcc
ttgctcctcagcttgcagacagcctattgt-gggacttcaccttgtgatcartccagcagc
ci:ttcggat-t.ccaaagcggctgtcctggaaaacatagggctccttccactaacccacctc
tctgaatgcagcagaggtggaacccagacagggatcagtgggtt-aaagacagagctggga
gc z aaggt.agccagagt.tt.gc c aggc agagtatggcggagagagc cac gcagagagagaa
ttrtggacacctacggaggaatctcttcgagtatataaaagaggactgatcagcagtgca

Fig. 5.12. SwingGenScan results

244

The "Run Blast" button remains disabled as long as no sequence is
selected for BLAST analysis and becomes active after a sequence is
selected (Fig. 5.12 and Fig. 5.13). Fig. 5.13 and Fig. 5.14 further demonstrate
how predicted sequences can be selected and sent for further analysis using
BLAST. Note that selected sequences can be unselected by simultaneously
pressing the Control and the left click button on the Mouse (on Windows)
and the Apple button and the click (on Mac).

a

GenScan fcsull iialBg

> g i I GEMSCAH_pxetJicced_peptide_l 1325_aa
HAUSrrSFFHri6KKSW(lCmAGFIiKTOETIir?ISQSSRH¥I?CEri,QDPCQ&I,PLl

KDLSSKQMHIFPIQRHEA^ACMLLIIQPCHCQPAFIQEMSSRISCMEQVGSWKRSQ
HHSH.WSVPEPVOQACrLrPESlQSAGCFLPSiriGtQTlQrBTI.Gi.TSWCOGlSGLBI'Q

lECCTVCrSTFITOCiGLASLI.LSlClTlTCGTSPCDHSSSLSDSKMfLEHIGlLPLTHL

SECSRCCTQTGISGLKTElGAK¥AR?CQAETCGESHAIBEnrrPTIESI,RVYKRaiSSA
Sr.ISTOHGSLrecnKTFIPEGIEP

\-<i\ 1 eEHSCAH_pEe<licted_a>S_l 1978_bp

a c. 'J gccc t a a t c a g t t t t a a a t c t - c e g t t t a a t w - t a t t g g a a a g a a g a g c t ggcaa tgc

c ; ; - . r : i c a g a g g c c g g c t t t g a c a a a g t g g a t g a a a c a a t t a t c t t c g t t a t c s g c c a a a g c

i g r c g a a a t g t g a t a g t t f l g g g a a t t t t t g c a g g a c c c a t g c c a g g g c t t a c c t c t g c t a
iag; -a tccgt ;cc tcaaagcaggcagcaaatotgt . t .oocct -ggcagaggat ;ggaagccgtg

gc: !:.r,gtgac a t t c t e c t g a t a a t g c a g c c a g g c c a c g g g c a g c c a g c a t t t c tgcagggg

? .vg- !gc tccaggotcagtggggcagcagagcaagtggggagccggtcca tgaggagtcag
: - i j t . ; a t t ; c c c t g c t g t g g t c t g t t c c t g a a c c a g t . c c a a c a g g c t . g g c t E c c t g t t c c c a

. j a a w c c c t c c a a a g t g c t g g a t g c c t c c t g c c a t c g a a c a t t g g a c t c c a a g t t c t t c a g
i - i ; . ' ; r . ggae tc t tgoac t ; t acaccag tgg t t t gccagggac tc t caggcc t t t ggoc t : cag

3l^ ' ; faaggctgoact .gt .cogct . t .occcaottctf laggtt . t t -gggaci:cggactggccccc
t t g c t c c t c a g c t tgcagacagcc t -a t tg t -gggac t t c a c c t t g t g a t c a t c c c agcagc

cr .c! :cggat t :ccaaagcggct :g tcc t :ggaaaat^ tagggcc .cGt tccactaacccacct .c

' .•c ' .- ,c;aatgcagcaaaggtggaaeccagaC8gggat.cagtogBttaaaoacagagccggga

g c c a a g g t a g c c a g a g t t t g c c a g g c a g a g t a t g g c g g a g a o a g c c a c g c a g a g a g a g a a
;•; r.c t ggacacc t a cggaggaa t c c c c t c g a g c a t a t a a a a g s g g a c t g a t c a g c ag tgc a

t c ' i c ' g t a t c t o c f t t g a t c a t g g t c c t e c a c c c g a a g g a c t g a o t a a a a c c t c c a t t c c t

^ Km Past

S

Fig. 5.13. Selecting sequences for BLAST analysis

Creating a Gene Prediction and BLAST Analysis Pipeline 245

SwilMlMI'lHl ni.iVl HM- I I I I MH||I
J..U_ -L _l. _ 1 !. ..L.-_i.L .. -L IL _:'.Ji.".J.. .. L A . L i I.

I . I . ' : . • : ; T .1 ; • . . : •.:: \- •• ; .• . • T „ . • . ;i •

'7"i".""T—.• -,-r"-~'- -.•.".•"-"rT'.TTr,-----•. :• r---"-;,-".-.

~:\--i,r-;,-'~r:—",-iTr"J„i-,r"r.---;T""".T"Ji.-^T;".-.-.n-r

Sp(|"fi"rp —r—r-„-Ti,:----:-, ! :L . , - :T r i , - .%- i , - r7 - - - i - - r ; V A

• I:J...I „ I , . • ; .•.•.ji„i, .;. v. -A'- '.'<• -I-.*-. • ' n.*-. -i .rt • '•'.-. -r-. •.'."•ii

„ . ;i _i:i •. _•. • • -,1 V 41- V I. J :„ .1, ^ ^Al". I. -.1 :-l"

. , : II . : ! • .". I l l . . ' . i-.".l . . • . • . ." ." . • I . . : i i . ' . ' i • . ' . .\'. ,'. ii .1 ii

'.'..,.::....1 -J ^.". jj.'.L.'. ' i . ' . ' I ' - j . : . ' . JJ...L1..^L.i':;....'.....J.L

Mrmjr.ii!) •- liiasiN [!I.1MX [lil.istX

liiU'ili'iSH iir "

1 v.iliip lUlin »

r.iiMi Militnii

Fig. 5.14. Sending predicted genes to SwingBlast for BLAST analysis

Only BLASTN has been implemented in the SwingGenScan application
for the purpose of demonstration. The user can further develop the
application by adding functionality for other BLAST operations. The
Genscan-BLAST analysis pipeline can be implemented in a completely
different manner than described here. For example, the Genscan output
window displaying the gene and peptide predictions can be modified to
contain the appropriate widgets to perform multiple BLAST analyses on
multiple selected sequences without the intermediate step of invoking the
SwingBlast application. The implementation shown here is one of many
ways to achieve the same end-result.

Summary

In this Chapter, we have demonstrated how we can create a basic gene
prediction and annotation pipeline by connecting the Genscan and BLAST
programs together. We created the BLAST application separately and tied
it together with Genscan thereby building an analytic pipeline that
demonstrates reuse of existing code libraries. The addition of functionality

246

to Genscan to enable BLAST analysis of predicted sequences is an
example of a real-life use case that will have much practical utility for
researchers who are involved in the sequencing and study of new genomes.

Questions and Exercises

1. The SwingGenScan application created in the Chapter
demonstrated the ability to perform BLASTN searches. Extend the
application to enable other types of BLAST searches (BLASTX,
BLASTP, etc.).

2. An important goal of gene prediction is to decipher gene structure
- that is, the location of exons and introns - in the input nucleotide
sequence. Think about how you would identify intron-exon
boundaries from Genscan predictions and align the individual
introns and exons along the original nucleotide sequence.

Additional Resources

• GenomeScan - http://genes.mit.edu/genomescan.html

• Glimmer - http://www.cbcb.umd.edu/software/glimmer/

• HMMGene - http://www.cbs.dtu.dk/services/HMMgene/

• TwinScan - http://genes.cs.wustl.edu/

Selected Reading

Prediction of complete gene structures in human genomic DNA. Burge, C.
and Karlin, S. (1997) J. Mol. Biol. 268, 78-94.

Finding the genes in genomic DNA. Burge, C. B. and Karlin, S. (1998)
Curr. Opin. Struct. Biol. 8, 346-354.

Creating a Gene Prediction and BLAST Analysis Pipeline 247

Computational inference of homologous gene structures in the human
genome. Yeh, R.-F., Lim, L. P., and Burge, C. B. (2001) Genome Res. 11:
803-816.

Improved microbial gene identification with GLIMMER (1999) A.L.
Delcher, D. Harmon, S. Kasif, O. White, and S.L. Salzberg. Nucleic Acids
Research 27:23, 4636-4641.

Two methods for improving performance of an HMM and their application
for gene finding. In Proc. of Fifth Int. Conf. on Intelligent Systems for
Molecular Biology, ed. Gaasterland, T. et al., Menlo Park, CA: AAAI
Press, 1997, pp. 179-186.

Chapter VI

cancer Biomedical Informatics Grid (caBIG™)

cancer Biomedical Informatics Grid

Whole genome sequencing projects that led to the sequencing and
assembly of the human genome and scores of other vertebrate and
invertebrate genomes have changed the face of biology and medicine
forever. The convergence of molecular-scale biological science, high-
throughput technologies and large-scale computing has led to an explosive
growth in the volume of information that is available to the modern day
biomedical scientist. The success of biomedical research in designing
effective therapies for the treatment of complex diseases such as cancer is
fundamentally dependent on our ability to integrate and assimilate this raw
and largely unstructured data from a variety of experimental platforms
encompassing the genomics, proteomics, transcriptomics and the
pharmacological and clinical domains. It is also increasingly becoming
evident that cooperation among research organizations across geographical
boundaries and an open sharing of datasets and analytic tools as well as
individual expertise and knowledge is critical to the continued
advancement of biomedical research towards its goals.

The cancer Biomedical Informatics Grid project or caBIC^"
(pronounced see-ay-big) is built on this very premise. We had provided an
introduction to the caBIG™ program in Chapter 1. To recap, the caBIG
project was launched in July 2003 and is initiated and funded by the
United States National Cancer Institute (NCI) under the aegis of the United
States National Institutes of Health (NIH). CaBIG™ is a critical

250

component of NCI's challenge goal of eliminating suffering and death due
to cancer by the year 2015. Indeed, CaBIG™ is an effort designed to
achieve a level of cross-disciplinary integration that is unprecedented in
the history of cancer research. According to NCI Director, Dr. Andrew von
Eschenbach, "...caBIG will become the 'World Wide Web' of cancer
research informatics and will accelerate the development of exciting
discoveries in all areas of cancer research". According to the official
website (http://cabig.nci.nih.gov/), caBIG is a voluntary, open source, open
access initiative that is being designed and built in partnership with the
cancer research community across the United States. Since the caBIG pilot
program was launched, more than 50 interested NCI-designated cancer
centers and more than 800 individuals have participated in the
development of the vision, approach and structure of caBIG..

Structure and Organization of caBIG™

caBIG™ participating institutions are organized into Workspaces that
are devoted to specific domains of interest relevant to cancer research.
Currently, there are four Domain Workspaces, two Cross Cutting
Workspaces and three Strategic Level Workspaces. Table 6.1 provides
names and descriptions of the various Workspaces under caBIG™.

Table 6.1. Structure of caBIG'

Workspace name
Domain Workspaces
Clinical Trial Management
Systems Workspace

Integrative Cancer Research

Purpose

Modular development of tools for the management of
clinical trials. These include development of a
structured model for protocol representation as well
as tools for managing and reporting adverse events
that occur during the course of a clinical trial, a
laboratory interface module to facilitate automated
submission of data to clinical trials systems, a
reporting module to submit data electronically to
NCI's CDUS (Clinical Data Update System) and the
NCI's Clinical Trial Monitoring Service (CTMS) and
a financial/billing module to monitor budgets and
expenditure in clinical trials. The Workspace is
divided into special interest groups for each of these
difference activities.
Development of modular and interoperable tools and

cancer Biomedical Informatics Grid 251

Workspace

In Vivo Imaging Workspace

Tissue Banks and Pathology
Tools Workspace

interfaces that provide for integration of clinical and
basic research data derived from genomics and
proteomics platforms. The Workspace is organized
into special interest groups devoted to topics such as
Genome Annotation, Microarray Repositories,
Pathways Tools, Data Analysis & Statistics,
Population Sciences and Translational Tools. Tools
being developed under the Workspace include
Rproteomics (MALDI-TOF proteomics analysis
tool). Gene Ontology Miner (tool for aggregate
analysis of gene sets), HapMap (map of haplotypes in
human genome), caArray (cancer microarray data
management system), Distance Weighted
Discrimination (microarray data analysis integrator),
Visual and Statistical Data Analyzer (multivariate
statistical visualization tool for the analysis of
complex data), FunctionExpress (integrated analysis
and visualization of microarray data). Quantitative
Pathway Analysis in Cancer (pathway modeling and
analysis tool), TrAPSS (disease gene mutation
discovery and analysis tool), etc.
Development of tools to share and integrate the
wealth of information provided by in vivo imaging
with other types of data. The in vivo imaging
technologies and modalities will include systems for
research and clinical imaging of live patients and
animals (including single-cell organisms) used as
model systems for human disease.
Development and integration of tissue bank and
pathology tools and infrastructure components to
enable researchers to locate and analyze tissue
specimens for use in cancer research based on tissue,
clinical, and genomic characteristics. Tools created
under this Workspace include a standard
Biospecimen Object Model and suite of tools to
facilitate specimen management, annotation and
sharing. Specific applications being developed are a
specimen inventory and tracking system (caTISSUE
Core), a mapping module to get data from tumor
registries and clinical anatomy laboratory
information systems (caTISSUE Clinical Annotation
Engine) and a cancer Text Information Extraction
System to automate the process of coding, storing
and retrieving data from free-text Pathology Reports
(caTIES).

252

Cross Cutting Workspaces
Architecture Workspace Development of tools to ensure consistent application

of caBIG™ principles by the large caBIG™
developer community and to meet the caBIG'^"
program goals of data sharing and interoperability on
the grid. Activities include formulating guidelines
and definitions for caBIG™ participants to evaluate
the maturity level of potential caBIG™ systems and
applications (caBIG ™ Compatibility Guidelines),
development of the grid infrastructure to support the
caBIG •'̂ community (caGrid), development of a
comprehensive grid security infrastructure for
managing federated authentication and authorization
in caBIG™, etc.

Vocabularies and Common
Data Elements Workspace

Development of policies and guidelines to evaluate
and integrate systems based on vocabulary and
ontology content as well as software systems for
content delivery. Among the major deliverables of
this Workspace are the Common Data Elements
(CDE) Governance Model to manage the
development and administration of CDEs in the
Domain Workspaces, data standards approval
guidelines for defining the procedures for reviewing
and approving data standards, procedures for review
and approval of new VCDE content to provide for
overall standardization of CDEs within caBIG ™, a
vocabularies deployment document which lists
vocabulary standards consistent with caBIG ™
compatibility requirements and LexGrid, a
vocabulary server that can be accessed through a
well-structured application programming interface
(API) capable of accessing and distributing
vocabularies as commodity resources.

Strategic Level Working
Groups
Strategic Planning Working
Group

Development of strategic planning and vision
guidelines in support of the caBIG^" Oversight
Board. Activities include creating white papers and
planning documents that help define the strategic
goals for each individual Workspace as well as for
the overall caBIG™ project, along with metrics to
measure the success of defined objectives.

Data Sharing and Intellectualpevelop
Capital

ment of policies and white papers to clarify
caBIG's stand on issues surrounding data sharing and
intellectual property. Some of the major activities of

cancer Biomedical Informatics Grid 253

Training Working Group

the Working Group include development of
guidelines and a model agreement for use by
caBIG"^" participant institutions to distribute
caBIG'"^ software and related documentation, a
caBIG™ publications policy, guidelines on best
practices and model agreements for the sharing of
data and of biospecimens, reagents and other
materials, and a white paper on the de-identification
of patient data.
Development of a caCORE curriculum designed to
prepare caBIG"^" participants to operate and use the
NCI resources such as Enterprise Vocabulary
Services (EVS), Cancer Data Standards Repository
(caDSR), and Cancer Bioinformatics Infrastructure
Objects (caBIO) as well as creating templates and
guidelines for caBIG™ documentation and training
and organizing boot camps to impart training on
caBIG™ technologies.

Further details on caBIG™, its constituent Workspaces and Working
Groups and their objectives are available on the WWW at
http://cabig.nci.nih.gov/. The ultimate aim of caBIG™ is to enable
researchers to collect comprehensive data about cancer in a standardized
manner, to enable the study of cancer data as a whole, thereby accelerating
the pace of cancer research.

The purpose of this chapter is to not only inform the readers of current
efforts in the area of cancer research but also provide knowledge about the
technologies that are being developed as an integral part of the effort so
that the biomedical and the computer scientists among us can begin using
them and in so doing, contribute to their continued development that will
ultimately lead to better healthcare solutions and better care and treatments
for patients. We will begin by reviewing a few tools and technologies that
are relevant to our understanding of how information technologies can
assist biomedical research.

Data Integration and ETL

Biomedical researchers routinely need to access and cross-reference
sequence and related annotation data from a wide variety of sources such
as PubMed, Entrez Gene (previously called LocusLink), Gene Ontology

254

(GO), UniGene, Swiss-Prot, Ensembl, HomoloGene, UniSTS, etc. Because
difference data sources use different formats, it is not easy to compare and
combine data from these sources unless they are converted into a common
format. Data in UniGene, for example, is presented in text format; data in
the GO database is described in an XML format and data in Entrez Gene is
available in binary Abstract Syntax Notation number One (ASN.l) format.

CaBIG™ also handles a wide array of data sources, types and formats,
from a number of different public domain sources since one of its major
goals is to enable access to and sharing of translational research data
between cancer researchers. In order to facilitate integration of diverse data
types, tools that perform what is known as Extract, Transform and Load
(ETL) functions are used. These tools convert data in different formats into
a common, standard, usable format. The first step - Extraction - is the part
that establishes access to the external database or source that contains the
data of interest. The next step - Transformation - analyzes the original data
format and converts it to fit with the format of the target repository. For
example, information on a gene id can be coded as an XML tag in the
form:

<gene id="<my id>"/>

or, as an SQL varchar(64) which means a string of variable length with
a maximum size of 64 characters, and other formats. When we design the
ETL strategy, we will first create business rules and define the format of
the gene identifier that will be used to store that information in the target
repository. If this is the SQL varchar(64) type, we will transform data from
sources that use a different format into this pre-selected target gene ID
format.

The Transformation step can also involve a data-cleansing step to
eliminate bad or duplicate entries from input data sources. This process
can be done after transforming the data or just before adding data to the
target repository. The last step - Load - gets the transformed data loaded
into a data repository or a data warehouse, which is optimized to enable
faster access to the stored data. An additional step after Extract-Transform-
Load is Transportation, which facilitates transport of the formatted data
from its current location to the defined location, before it is processed or
used further.

cancer Biomedical Informatics Grid 255

A number of open source ETL tools are available, for example, Kettle
(available from http://www.kettle.be/). Octopus (available from
http://www.enhydra.org/tech/octopus/index.html), and others. Examples of
ETL tools being developed under the caBIG™ program include cancer
Function Express tool (caFE), which annotates individual probe sequences
(short DNA sequences that represent individual genes or transcripts from a
particular genome) on microarray chips (arrays of thousands of individual
probe sequences embedded on a substrate to detect the presence of specific
genes or transcripts in a given genome by hybridizing probes with nucleic
acids from the test sample) using data from a number of NCBI and other
public databases.

cancer Common Ontologic Representation Environment
(caCORE)

A critical component of the partnership between NCI and the Cancer
Centers in building the biomedical informatics grid is NCI's Center for
Bioinformatics (NCICB). NCICB's mission is to create a close knit and
cooperative cancer research community and an interoperable federation of
informatics resources covering all aspects of cancer research. NCICB is
providing critical support for caBIG through the development of caCORE,
an open source semantic enterprise architecture for NCI-supported
research information systems for genomic and clinical research. A large
number of NCI applications such as the Cancer Molecular Analysis
Project (CMAP), the Cancer Models Database (caMOD), and Gene
Expression Data Portal (GEDP) are directly supported by caCORE. A list
of publicly available data sources in the caCORE database is provided in
Table 6.2. More information on caCORE is available on the NCI caCORE.

Table 6.2. caCORE data sources

Name Purpose
CGAP Cancer Genome Determine the gene expression profiles of normal,
Anatomy Project (CGAP) precancer, and cancer cells, leading eventually to

improved detection, diagnosis, and treatment for
the patient.

CGAP Genetic Annotation Develop a systematic and comprehensive notation
Initiative (GAI) of variations in the DNA sequences of each cancer-

related gene.
Mouse Models of Human Derive and characterize mouse models, and to
Cancers Consortium generate resources, information, and innovative

256

(MMHCC) approaches to the appUcation of mouse models in
cancer research.

Cancer Molecular Analysis Facilitate the identification and evaluation of
Project (CMAP) molecular targets in cancer by integrating

comprehensive molecular characterizations of
cancer.

Gene Expression Data Portal Provide access to microarray data as well as online
(GEDP) data annotation and analysis tools.

Integrated Molecular Establish a common resource of publicly available
Analysis of Genomes and cDNA libraries for access to sequence, map, and
their Expression (IMAGE) expression data.
Consortium

caCORE is built on the principle of Model Driven Architecture, which is
a way to organize and manage enterprise architectures supported by
automated tools and services for both defining the models and facilitating
transformations between different types of models. CaCORE is built on an
n-tier architecture model and provides open source Application
Programming Interfaces (APIs) which allow for easy access to data by
applications.

The main components of caCORE are:

• Enterprise Vocabulary Services (EVS): Controlled vocabulary resources
(such as the NCI thesaurus and metathesaurus) for the life sciences
domain that provide a context driven semantic basis for the construction
of data elements, classes, and objects.

• Cancer Data Standards Repository (caDSR); A metadata registry based
upon the ISO/IEC11179 standard that renders research data on cancer
reusable and interoperable. The 11179 standard created by the
International Organization for Standardization (ISO) and the
International Electrotechnical Commission (lEC) specifies the criteria
for metadata that are necessary to describe data, as well as the
management and administration of that metadata in a metadata registry.

• Cancer Bioinformatics Infrastructure Objects (caBIO): A suite of
software, vocabulary, and metadata models for cancer research.

We will explore caBIO objects in further detail in this chapter.

cancer Biomedical Informatics Grid 257

Cancer Bioinformatics Infrastructure Objects (caBIO)

caBIO objects constitute the primary programming interface to
caCORE. caBIO objects are implemented using Java and Java Bean
technology, and model the behavior of hierarchies of biological entities
such as genes, sequences and chromosomes, their constituent molecular
forms such as Single Nucleotide Polymorphisms (SNPs, a single nucleotide
difference at a defined location within an individual's DNA sequence), and
other entities such as clones, libraries, agents, pathways, tissues and
diseases. A representative list of objects and their descriptions are shown
in Table 6.3.

Table 6.3. caBIO domain objects

Object name Description
Gene

GeneAlias

GoOntology

Target

Protein

Disease

Pathway

The basic physical and functional unit of heredity. Gene
objects are the effective portal to most of the genomic
information provided by the caBIO data services such as
organs, diseases, chromosomes, pathways, sequence data,
and expression experiments.
An alternative name for a gene; provides descriptive
information about the gene (as it is known by this alias), as
well as access to the Gene object it refers to.
An object providing entry to a Gene object's position in
the Gene Ontology Consortium's controlled vocabularies.
GoOntology provides access to gene objects
corresponding to the ontological term, as well as to
ancestor and descendant terms in the ontology tree.
A gene thought to be at the root of a disease etiology and
targeted for therapeutic intervention. Defined and used by
the CMAP project.
An object representation of a protein; Protein objects
provide access to the encoding gene via its GenBank ID,
the taxon in which this instance of the protein occurs, and
references to homologous proteins in other species.
Specifies a disease name and ID; also provides access to
ontological relations to other diseases; clinical trial
protocolstreating the disease; and specific histologies
associated with instances of the disease.
An object representation of a molecular/cellular pathway
compiled by BioCarta. Pathways are associated with
specific Taxon objects, and contain multiple Gene objects,
which may be targets for treatment.

258

Therapeutic agent A therapeutic agent (drug, intervention therapy) used in a
clinical trial protocol.

ClinicalTrialProtocol The protocol associated with a clinical trial; organizes
administrative information about the trial such as
Organization ID, participants, phase, etc. provides access
to the administered Agents.

Histopathology An object representing anatomical changes in a diseased
tissue sample associated with an expression experiment;
captures the relationship between organ and disease.

caBIO provides programmatic access to a variety of open source
genomic, biological, and clinical data sources available from the NIH such
listed previously (such as Unigene, EntrezGene, etc.) as well as others
such as Biocarta and clinical trials protocols, etc. caBIO is built upon open
source technologies such as Java, Simple Object Access Protocol (SOAP,
an XML based platform and language independent protocol for
exchanging information between applications over the web), Apache,
Jakarta Tomcat, XML and UML. There are a number of ways that users
can access caBIO. Java-based clients communicate with caBIO via the
Java API, which contains the domain objects provided by the caBIO.jar
file. Non-Java based applications can communicate via SOAP, or by using
the caBIO HTTP API and receive objects as XML. caBIO provides access
to curated data from multiple sources as described in Table 6.4.

Table 6.4. caBIO data sources

NCBI UniGene Unigene provides a nonredundant partitioning of the
genetic sequences contained in GenBank into gene
clusters. Each such cluster has a unique UniGene ID and a
list of the mRNA and EST sequences that are subsumed
by that cluster.

NCBI Entrez Gene Entrez Gene contains curated sequence and descriptive
(previously called information associated with a gene such as gene name,
LocusLink) aliases, sequence accession numbers, phenotypes,

UniGene cluster IDs, OMIM IDs, gene homologies,
associated diseases, map locations, etc.

Gene Ontology (GO) The Gene Ontology Consortium provides a controlled
terms vocabulary for the description of molecular functions,

biological processes, and cellular components of gene
products.

NCBI HomoloGene HomoloGene is a resource for curated and calculated gene
homologs.

BioCarta pathways BioCarta provides detailed graphical renderings of

cancer Biomedical Informatics Grid 259

pathway information concerning apoptosis, cell signalling,
cell cycle regulation, immunology, metabolism, and
neuroscience, etc.

NCI Cancer Therapy CTEP funds an extensive national program of basic and
Evaluation Program clinical research to evaluate new anti-cancer agents, with a
(CTEP) particular emphasis on translational research to elucidate

molecular targets and drug mechanisms.
NCI Cancer Models caMOD provides information on animal models of human
Database (caMOD) cancer.

Downloading and Configuring caBIO

caBIO can be downloaded from the NCICB website at:

h t t p : / / n c i c b . n c i . n i h . g o v / d o w n l o a d / i n d e x . j s p

Download caC0RE3-l.zip file (or the latest available version), unzip to
extract the required libraries and save them in an appropriate location
making sure that the absolute path to client.jar is declared in the Java
classpath. Fig. 6.1 below shows the caCORE download page.

€?::̂ -:.....
^Si:|i?a^:

•, •..
• : ; : : • • • , . j

. ' ' . ' . ' ' • " " '

" • • . ' ' • • . . , ' : • ,

.... ... ,- .-
, . . y - ; - - • * • • „ • • • • •

"'. '
'.

'..- ' • • • • . -

'•' :•'•'." . • :•: v / . : ^ : i ! Jg i i iBJss lMsg^SSS

'•= ' ?i^i^^vSiMMiilfr^^
•.". *• "•. :::••:'. ^i'V!:MX-j&si:u.S^;mfsu ••--••

' - • ••••".QRE ^/Z.1

' 1 . ' ' . • " • • ' • ^S 'WaMi lHJ lu !)

• . ; .. rnmsfvcsC^RE dl^Ftulion cenlsiisitif ESCO^E -.Heni wrWs, 3 TsstCtienI aemonsiisHcn vrn'SfK
' . - •- :• ,iciC0"^6 3 ' : j ' * t -isiani inEnSfi&rse iythiiuM l-i^P iihi RtiiMl I'm ftir.lHr^.li) is .1 J w j atitam ilfh

• .• SMht,: 31! •iimi' f =uOt?t iiii-n)..H Aimm. S'i v*wi; a-.-. m.r^it;;i!;-.wrSu.-#is:e c\m^ ipquiw la HIUC
• : •:s!1al^#c3C0FE?5:5,s;.

" • • -•• ^'^ i'?M^f2:iS?
• • - . . C E l i R-.;i'3?ewors? o C t ^ O ' mis?m

• ., • 0"r: l-im.^ft-msiArae (sC0?iSrJ~MbP:''^}'£-P~

. , . •••-..»;«eaiie-SfifvMi WiliUiiHtoii

• . taCOPE 3 S imiit.9tmefs&im sumnXtui'Sf-c^'iUm-=. ^h&Sjl ̂ m.itA i^O'-- of r.aCC'SE, -•- Csf-'sW*'-'!?
: r e : - ! « .«! t i le. ar. e=.-.E£ ! H jm^i {S^--;*-t lB . m i . Sti.j i c J C O S L - ? i -ML m M e l -̂t E w i - t s t l ? ^ i-nh-f! i

:•• • fiiftlorma

• . • ' •••.-Sie :E.C0R£3-! SOUf?CEj!!P

. •CPESayt.MlJeifciK^a.ji^ia .^C0Kt*3-i 60VBCE f-B'^'Uti^i

.•.../.iy.Ut.sOit.-^.liu^n

. . !;a?lO-MODdist!nijiani^&t>'*:S'is?Hiirrijo*,T"oae!1ie=. ThecaBlC ifOC'3-i^P^TnSA.^f Sp&fristn<
•• •: sBO and tai.iCO < .mtr.ai aii4msnutiruna fm 'itstaiiinq i-oca! «f:'ni>t an^mo-WjUmitmsL Thu
• ..-, C'-Ji'ODj- i„^6'-? drnj' ftJ Sies cinUtis tre ^ft js; u^fe ir isoittlile UIE 'J5:alins9. E'us ;.jili} ac.».-il£jBd
••• : i l i u i f . ' h e o..l3f-.i-)-> iJant| i !=:,-^ -.fs.-" l-r&is-ti ai> -'iki I1 i - i i - !i1u^

, . :-.:!"-mTaNT: OZ'!!v! 3 2 •; lewn-c k. 'Mms\hi aaiatssae JcTisfiie £iy= wth6 siiS'C'mecaiarassaurais
•• •:, nt& retgmmgr-ja^ shntv^u Bi^-«n-y.Ti ami ,nsla»'''Sgi '''^U^'i '> ̂ :!)nf:niar!f| t != hmtfim leiiwf-r.Q

•• .=j,sMs<s Of ' ^^ 'B ' . ' ^ . ^ J H ^ l # ! ! Q M^chaM

s •

M
J

1

v

Fig. 6.1. caBIO download page

260

Now that we have reviewed some of the concepts, technologies and
resources available to us from NIH, NCI and other sources, we will create
a simple practical application to demonstrate how to integrate the
individual isolated bits of data together into a richer, more usable dataset.

Creating the JcaBIO Application

We will create an application based on the caBIO API that we will call
JcaBIO to demonstrates how data pertaining to the Gene and the Agent
object can be retrieved using caBIO API. We will create three search
functions as outlined below that will define the business logic of the
application:

Gene search function: The gene search function will create a report that
provides information such as gene name and symbol, Unigene Cluster ID,
associated GO terms, gene product name and aliases.

Pathway search function: The pathway search function creates a report
that provides information on the pathways that a gene participates in along
with a description and a link to the pathway map on BioCarta.

Agent search function: The agent search function creates a report that
contains the names of the target(s) that a therapeutic agent binds, the
clinical trials that an agent is involved in along with the status. Phase and
the name of the institution conducting the trial.

According to this scheme, we will need four command buttons - one
each for creating the Gene, Pathway and Agent report and one to clear the
report. We will label the command buttons, "Run a Gene Search", "Run a
Gene/Pathway Search" and "Run an Agent Search" respectively. We will
need a text area to display the reports. We will place this below the
command buttons. We will need one text box each to enter the gene name,
the agent name and specify the number of reports we want to retrieve for
each search. We will place a default value of 10 in the last text box to
begin with. We also need a message area to provide the users information
on the current state of the application. When the application is launched
and when a search is complete, the status will display the "Ready!"
message. We will place the status bar below the text area.

cancer Biomedical Informatics Grid 261

When the application is initially launched, all the command buttons will
be disabled; the command buttons will become available after a valid gene
or an agent is entered into the appropriate fields. Only the appropriate
command buttons corresponding to the entries will be activated. An entry
in the Gene field, for example, will activate the "Run a Gene Search" and
"Run a Gene/Pathway Search" buttons while an entry in the Agent field
will activate the "Run an Agent Search" button. The Clear button will be
activated only after a search has been run and there are results to display.

JcaBIO Classes and Application Structure

The structure of the JcaBio application is shown in Fig. 6.2.

jcabio

src

org
.jfb

jcabio

CaBIOReportEngine

CaBIOSearchEngine

SearchException

StatusObject

SwingCaBIO

Fig. 6.2. Structure of JcaBIO

A description of the various classes and the corresponding code is as
follows:

SwingCaBIO: This is the main Swing application interface that enables
users to send queries and display reports about genes or agents using the
caCORE API.

262

SearchException: This class handles exceptions when a search fails.

statusObject: This class stores information on the state of the
CaBIOSearchEngine or the CaBIORepor tEngine , which respectively

handle the search and the report processes. Using a statusObject instead
of a String object affords a more generic way of passing the required
information. As a result, we have the freedom to modify the statusObject
class without having to change the signature of the method that uses this
object. We would need to modify only the content of the code as
appropriate.

CaBIOReportEngine: This is the class that generates the Gene or Agent
reports.

CaBIOSearchEngine: This class provides the functionality that enable
users to perform gene or agent searches.

The application at start up showing the various Swing components is
shown in Fig. 6.3.

Ill Ti l '
Nll lI l l lHI ••! I f S l l l l v

hliiil AlI'Mlt

KiMilVJ

Fig. 6.3. The JcaBIO application at start up

cancer Biomedical Informatics Grid 263

Coding the SwingCaBIO Application

SwingCaBio defines the application interface that the user interacts with
to send and retrieve queries using the caCORE API. swingCaBio is based
on the same Swing elements and concepts that were described in Chapter
1. SwingCaBio extends JFrame in order to generate a basic container for
the application. SwingCaBio also extends DocumentListener to listen to the
JTextField objects in order to enable or disable the corresponding buttons
that run the report. The constructor swingCaBio() calls the super
constructor and adds the observer to the Agent search and the report
engine. At that point, the application consists of a frame and nothing else
built inside. We then call the i n i t () function explained below that will
build our form for the Gene and Agent searches.

As described earlier, we need three command (search) buttons for
running the three custom reports and a text area to display the search
results. We use what are called factory methods to create the different
pieces that are assembled in the i n i t () method. Factory methods refer to
the Factory Design Pattern, which specifies a way to create objects
without having to know how they are created or assembled. This design
allows the developer to change the way the buttons and other Swing
components are displayed without interfering with the rest of the Swing
components that make the application. The swingCaBio() method is
described below:

public SwingCaBI0() throws HeadlessException {
super();
AGENT_SEARCH.addObserver(observer);
REP0RT_ENGINE.addObserver(observer);

}

private void init() {
setTitle("SwingCaBio");
final Container contentPane = getContentPane();
contentPane.setLayout(new BorderLayout());
JPanel formPanel = createForm();
JPanel reportPanel = createReportPane();
statusBar = new JLabel(STATUS_READy);
statusBar.setBorder(BorderFactory.createEmptyBorder(5, 5,
5, 5));
contentPane.add(formPanel, BorderLayout.NORTH);
contentPane.add(reportPanel, BorderLayout.CENTER);
contentPane.add(statusBar, BorderLayout.SOUTH);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
pack() ;
setSize(DIMENSION);

264

final Dimension screenSize = Toolkit.getDefaultToolkit()
getScreenSize();
setLocation(new Point((screenSize.width - SW_WIDTH) / 2,
(screenSize.height - SW_HEIGHT) / 2));
show();

The getNumberOfobjectsForResult() method handles the total
number of results to return for a search. As indicated earlier, we will place
a default value of 10 for this.

private static final StatusObject STATUS_REPORT_GENERATED =
new StatusObject("Report generated!", 10);
final int len =
getNumberOfObjectsForResult(genes.length);
sb.append("Search Results for '" + genePattern + "' (" +

len + " gene(s) found);\n\n");
for (int i = 0; i < len; i++) {
Gene gene = genes[i];
REPORT_ENGINE.printFullGeneReport(gene, sb, i + 1);

}

We use the showReport() method to set the text area with the current
StringBuffer object containing the report generated. Anytime a Swing
object is modified, we need to make sure that the method runs in the event-
dispatching thread (also called the AWT thread) to avoid painting
problems. The method checks if we are already in the event-dispatching
thread before calling the runnable object.

private void showReport(final StringBuffer sb) {
Runnable runnable = new Runnable() {

public void run() {
jTextArea.setText(sb.toString());

}
};
if (SwingUtilities.isEventDispatchThread())

runnable.run();
else

SwingUtilities.invokeLater(runnable);
}

The methods inse r tUpda te () , changeUpdate() and removeUpdate()
are methods from the DocumentListener interface. We will use these
methods to update the buttons according to the values found in the gene
and the agent fields.

public void insertUpdate(DocumentEvent event) {

cancer Biomedical Informatics Grid 265

updateButtons();
}

private void updateButtons() {
boolean enabled = gene.getText().trim().length() > 0;
runGenePathwayReport.setEnabled(enabled);
runFullGeneReport.setEnabled(enabled);
runTargetAgentReport.setEnabled(agent.getText().triin().
length() > 0);

}

The three update methods are delegating the treatment of the event to
the updateButtons () method. The updateButtons () method enables or
disables buttons according to the status of the search and the corresponding
report that is generated. We add a utility method called errorOumpo to
create an error message and update the status bar to alert user about any
problems encountered:

p r i v a t e void errorDuinp(StringBuffer sb , SearchException e)
{

sb.delete(0, sb.Iength());
sb.append("An error occured!\n\n" +
e.getEmbedded().getMessage());

updateStatus(new StatusObject("An error occured!", 5));
}

We include a method to update the status of the search and reporting
using the updateStatus () method. updateStatus () sets the text in the
status bar with information on the state of the search. We need to invoke
and display the update right away to ensure that the user is alerted as soon
as an issue arises. For this reason we have implemented the
invokeAndWait() instead of the invokeLater() method.

These methods force the JVM to invoke the run () method of the
Runnable object passed as an argument, inside the event-dispatching
thread.

p r i v a t e void u p d a t e S t a t u s (f i n a l Sta tusObject
Sta tusObject) {

Runnable runnable = new Runnable() {
publ ic void run() {

s t a t u s B a r . s e t T e x t (S t a t u s O b j e c t . g e t S t a t u s T e x t ()) ;
i f (Sta tusObject .hasTimer()) {

new Thread(new Runnable() {
publ ic void run() {

t r y {
synchronized (t h i s) {

266

this.wait(statusObject.getTimer() * 1000);
}
updateStatusToReady();

} catch (interruptedException
e) {

e.printStackTrace();
}

}
}).start();

}
}

};
if (SwingUtilities.isEventDispatchThread()) {

runnable.run();
} else {

try {
SwingUtilities.invokeAndWait(runnable);

} catch (InterruptedException e) {
e.printStackTrace();

} catch (InvocationTargetException e) {
e.printStackTrace();

}
}

}

The main() method starts the creation of the SwingCaBio in the event-
dispatching thread. This avoids having paint methods that freeze the
application i.e., the application does not respond to any mouse clicks or
keyboard interactions or the application is just gray with no components
created in the main frame.

public static void main(String[] args) {
SwingUtilities.invokeLater(new Runnable() {
public void run() {

final SwingCaBio swingCaBIO = new SwingCaBIO();
swingCaBIO.init();

}
}) ;

}

The complete code for the SwingCaBio class is provided in Listing 6.1.

Listing 6.1. Class SwingCaBIO

package o r g . j f b . j c a b i o ;

import gov.nih.nci.cabio.domain.Agent;
import gov.nih.nci.cabio.domain.Gene;

cancer Biomedical Informatics Grid 267

import javax.swing.*;
import j avax.swing.event.DocumentEvent;
import j avax.swing.event.DocumentListener;
import j ava.awt.*;
import j ava.awt.event.ActionEvent;
import Java.awt.event.ActionListener;
import Java.lang.reflect.InvocationTargetException;
import java.util.Observable,•
import java.util.Observer;

public class SwingCaBIO extends JFrame implements
DocumentListener {

private static final int SW_WIDTH = 700;
private static final int SW_HEIGHT = 600;
private static final Dimension DIMENSION = new

Dimension(SW_WIDTH, SW_HEIGHT);
private static final Dimension DIM_FIELD = new

Dimension(85, 18);
private final static String CABIO_HTTP_SERVER_URL =

"http://cabio.nci.nih.gov/cacore30/server/HTTPServer";
private final static ApplicationService APP_SERVICE =
ApplicationService.getRemotelnstance(CABIO_HTTP_SERVER

_URL);
private static final CaBIOSearchEngine AGENT_SEARCH =

new CaBIOSearchEngine(APP_SERVICE);
private static final CaBIOReportEngine REPORT_ENGINE =

new CaBIOReportEngine(APP_SERVICE);
private static final String STATUS_READY = "Ready!";
private static final StatusObject

STATUS_REPORT_GENERATED = new StatusObject("Report
generated!", 10);

private JTextArea jTextArea;
private JTextField gene;
private JButton runFullGeneReport;
private JButton runTargetAgentReport;
private JButton runGenePathwayReport;
private JButton clear;

private JLabel statusBar;
private JTextField result;
private JTextField agent;

public SwingCaBIO() throws HeadlessException {
superO;
AGENT_SEARCH.addObserver(observer);
REPORT_ENGINE.addObserver(observer);

}

private void init() {
setTitle("SwingCaBIO");

268

final Container contentPane = getContentPane();
contentPane.setLayout(new BorderLayout());
JPanel formPanel = createForm();
JPanel reportPanel = createReportPane();
statusBar = new JLabel(STATUS_READY);

statusBar.setBorder(BorderFactory.createEinptyBorder(5, 5, 5,
5));

contentPane.add(formPanel, BorderLayout.NORTH);
contentPane.add(reportPanel, BorderLayout.CENTER);
contentPane.add(StatusBar, BorderLayout.SOUTH);
setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
pack();
setSize(DIMENSION);
final Dimension screenSize =

Toolkit. getDefaultToolkit().getScreenSize();
setLocation(new Point((screenSize.width - SW_WIDTH)

/ 2, (screenSize.height - SW_HEIGHT) / 2));
show();

}

private JPanel createReportPane() {
jTextArea = new JTextArea();
jTextArea.setText("No Report.");
JTextArea.setEditable(false) ;
JTextArea.setWrapStyleWord(true);
JTextArea.setLineWrap(true);
final Font sf = jTextArea.getFont();
Font f = new Font("Monospaced", sf.getStyle(),

sf.getsize());
JTextArea.setFont(f);
JTextArea.getDocument().addDocumentListener(new

DocumentListener() {
public void insertUpdate(DocumentEvent event) {

clear.setEnabled(JTextArea.getText().trim().length() != 0);
}

public void removeUpdate(DocumentEvent event) {

clear.setEnabled(jTextArea.getText().trim().length() != 0);
}

public void changedUpdate(DocumentEvent event)
{

clear.setEnabled(JTextArea.getText().trim().length() != 0);
}

});
JPanel jPanel = new JPanel();
jPanel.setLayout(new BorderLayout());
final JScrollPane jScrollPane = new

JScrollPane(JTextArea);

cancer Biomedical Informatics Grid 269

jPanel.add(jScrollPane, BorderLayout.CENTER);
jPanel.setBorder(BorderFactory.createEmptyBorder(0,

5, 5, 5));

return jPanel,•

}

private JPanel createForin() {
final JPanel genePanel = new JPanel();
genePanel.setLayout(new BoxLayout(genePanel,

BoxLayout.LINE_AXIS));
gene = new JTextField(10);
this.gene.setMaximumSize(DIM_FIELD);
gene.getDocument().addDocumentListener(this);
final JLabel geneLabel = new JLabel("Gene");
geneLabel.setPreferredSize(DIM_FIELD);
genePanel.add(Box.createRigidArea(new Dimension(5,

0))) ;

0)));

genePanel.add(geneLabel);
genePanel.add(Box.createRigidArea(new Diinension(5,

genePanel.add(gene);
genePanel.add(Box.createHorizontalGlue());
final JPanel agentPanel = new JPanel();
agentPanel.setLayout(new BoxLayout(agentPanel,

BoxLayout.LINE_AXIS));
agent = new JTextField(10);
agent.setMaximumSize(DIM_FIELD);
agent.getDocument().addDocumentListener(this);
final JLabel agentLabel = new JLabel("Drug Agent");
agentLabel.setPreferredSize(DIM_FIELD);
agentPanel.add(Box.createRigidArea(new Dimension(5,

0))) ;

0)));

agentPanel.add(agentLabel);
agentPanel.add(Box.createRigidArea(new Dimension(5,

agentPanel.add(this.agent);
agentPanel.add(Box.createHorizontalGlue());

JPanel jPanel = new JPanel();
jPanel.setLayout(new BoxLayout(jPanel,

BoxLayout.PAGE_AXIS));
jPanel.add(Box.createRigidArea(new Dimension(0,

5))) ;

5)));

5)));

jPanel.add(genePanel);
jPanel.add(Box.createRigidArea(new Dimension(0,

jPanel.add(agentPanel) ;
jPanel.add(Box.createRigidArea(new Dimension(0,

final JPanel resultPanel = new JPanel();
resultPanel.setLayout(new BoxLayout(resultPanel,

BoxLayout.LINE_AXIS));

270

result = new JTextField("10", 10);
result .setMaxiinuinSize(DIM_FIELD);
final JLabel resultLabel = new JLabel("Number of

results: ") ;
resultPanel.add(Box.createRigidArea(new

Diinension(5, 0))) ;
resultPanel.add(resultLabel);
resultPanel.add(Box.createRigidArea(new

Dimension(5, 0)));
resultPanel.add(result);

JPanel jPanelResult = new JPanel();
jPanelResult.setLayout(new BoxLayout(jPanelResult,

BoxLayout.LINE_AXIS));
JPanelResult.add(jPanel);
resultPanel.add(Box.createRigidArea(new

Dimension(20, 0)));
JPanelResult.add(resultPanel);
resultPanel.add(Box.createHorizontalGlue());

runFullGeneReport = new JButton("Run a Gene
Search");

runFullGeneReport.setToolTipText("Please provide a
gene to search for.");

runFullGeneReport.setEnabled(false);
runFullGeneReport.addActionListener(new

ActionListener() {
public void actionPerformed(ActionEvent event)

{
final StringBuffer sb = new StringBuffer();
Runnable runnable = new Runnable() {

public void run() {
final String genePattern =

gene.getText();
showReport(new

StringBuffer("Searching with gene '" + genePattern +

try {
final Gene[] genes =

AGENT_SEARCH.searchGenesWithGenePattern(genePattern);
final int len =

getNumberOfObjectsForResult(genes.length);
sb.append("Search Results for

'" + genePattern + "' (" + len + " gene(s) found):\n\n");
for (int i = 0; i < len; i++) {

Gene gene = genes[i];

REPORT_ENGINE.printFullGeneReport(gene, sb, i + 1);
showReport(new

StringBuffer(jTextArea.getText()).append("\n")
.append("Generated

report for gene '" + gene.getFullName() +));

cancer Biomedical Informatics Grid 271

if (i + 1 < len)
sb.append("\n\n");

}

updateStatUS(STATUS_REPORT_GENERATED);
} catch (SearchException se) {

errorDump(sb, se);
}
showReport(sb);

}
};
new Thread(runnable).start();

}
});
runGenePathwayReport = new JButton("Run a

Gene/Pathway Search");
runGenePathwayReport.setToolTipText("Please provide

a Gene to search for.");
runGenePathwayReport.setEnabled(false);
runGenePathwayReport.addActionListener(new

ActionListener() {
public void actionPerformed(ActionEvent event)

{
final StringBuffer sb = new StringBuffer();
Runnable runnable = new Runnable() {

public void run() {
final String genePattern

gene.getText();
showReport(new

StringBuffer("Searching with gene '" + genePattern +
'"•••"));

try {
final Gene[] genes =

AGENTSEARCH.searchGenesWithGenePattern(genePattern);
int len =

getNumberOfObjectsForResult(genes.length);
sb.append("Search Results for

'" + genePattern + "' (" + len + " gene(s) found);\n\n");
Gene gene;
for (int i = 0; i < len; i++) {

gene = genes[i];

REPORT_ENGINE.printGenePathwayReport(gene, sb, i + 1);
showReport(new

StringBuffer(jTextArea.getText()).append("\n")
.append("Generated

report for gene '" + gene. getFullNaine() +));
if (i + 1 < len)

sb.append("\n\n");
}

updateStatus(STATUS_REPORT_GENERATED);
} catch (SearchException se) {

272

errorDump(sb, se);
}
showReport(sb);

}
};
new Thread(runnable).start();

}
});
runTargetAgentReport = new JButton("Run an Agent

Search");
runTargetAgentReport.setToolTipText{"Please provide

an agent to search for.");
runTargetAgentReport.setEnabled(false);
runTargetAgentReport.addActionListener(new

ActionListener() {
public void actionPerforined(ActionEvent event)

{
final StringBuffer sb = new StringBuffer();
Runnable runnable = new Runnable() {

public void run() {
final String agentPattern =

agent.getText();
showReport(new

StringBuffer("Searching with agent '" + agentPattern
+ "'..."));

try {
final Agent[] agents =

AGENT_SEARCH.searchAgentsWithAgentPattern{agentPattern);
final int len =

getNumberOfObj ectsForResult(agents.length);
sb.append("Search Results for

' " + agentPattern +
(" + len +

agent(s) found):\n\n");
Agent agent;
for (int i = 0; i < len; i++) {

agent = agents[i];

REPORT_ENGINE.printGeneAgentCliTriReport(agent, sb, i + 1);
showReport(new

StringBuffer(jTextArea.getText()).append("\n")
.append("Generated

report for agent '" + agent.getName() + "'"));
if (i + 1 < len)

sb.append("\n\n");
}

updateStatus(STATUS_REPORT_GENERATED);
} catch (SearchException se) {

errorDump(sb, se);
}
showReport(sb);

}

cancer Biomedical Informatics Grid 273

} ;
new Thread(runnable).start();

}
});
c l e a r = new JButton("Clear Repor t ") ;
c lear .addAct ionLis tener(new Act ionLis tener () {

publ ic void actionPerforined(ActionEvent event)
{

jTextArea.setText("");
}

});
clear.setEnabled(false);

JPanel buttonPanel = new JPanel();
buttonPanel.setLayout(new BoxLayout(buttonPanel,

BoxLayout.LINE_AXIS)) ;
buttonPanel.add(runFullGeneReport);
buttonPanel.add(Box.createRigidArea(new

Dimension(5, 0)));
buttonPanel.add(runGenePathwayReport);
buttonPanel.add(Box.createRigidArea(new

Diinension(5, 0))) ;
buttonPanel.add(runTargetAgentReport);
buttonPanel.add(Box.createRigidArea(new

Dimension!5, 0)));
buttonPanel.add(clear);

JPanel formPanel = new JPanel();
formPanel.setLayout(new BorderLayout());
formPanel.add(jPanelResult, BorderLayout.NORTH);
formPanel.add(buttonPanel, BorderLayout.CENTER);
return formPanel;

}

private int getNumberOfObjectsForResult(int len) {
String numOfRes = result.getText();
if (numOfRes != null && numOfRes.trim().length() >

return Math.min(Integer.parselnt(numOfRes),
0) {

len) ;
}
return len;

}

private void showReport(final StringBuffer sb) {
Runnable runnable = new Runnable() {

public void run() {
JTextArea.setText(sb.toString());

}
};
if (SwingUtilities.isEventDispatchThread())

runnable.run();
else

SwingUtilities.invokeLater(runnable);

274

0;

}

public void insertUpdate(DocuinentEvent event) {
updateButtons();

}

private void updateButtons() {
boolean enabled = gene.getText().trim().length() >

runGenePathwayReport.setEnabled(enabled);
runFullGeneReport.setEnabled(enabled);

runTargetAgentReport.setEnabled(agent.getText().trim().length
() > 0);

}

private void errorDump(StringBuffer sb, SearchException
e) {

sb.delete(0, sb.Iength());
sb.append("An error occured!\n\n" +

e.getEmbedded().getMessage()) ;
updateStatus(new StatusObject("An error occured!",

5));
}

private Observer observer = new Observer() {
public void update(Observable observable, Object o)

{
updateStatus((StatusObject) o);

}
};

private void updateStatusToReady() {
updateStatus(StatusObj ect.STATUS_READY);

}

private void updateStatus(final StatusObject
StatusObject) {

Runnable runnable = new Runnable() {
public void run() {

statusBar.setText(StatusObject.getStatusText());
if (StatusObject.hasTimer()) {

new Thread(new Runnable() {
public void run() {

try {
synchronized (this) {

this.wait(StatusObject.getTimer() * 1000);
}
updateStatusToReady();

} catch (interruptedException
e) {

cancer Biomedical Informatics Grid 275

e.printStackTrace();
}

}
}).start();

}
}

};
if (SwingUtilities.isEventDispatchThread()) {

runnable.run();
} else {

try {
SwingUtilities.invokeAndWait(runnable);

} catch (InterruptedException e) {
e.printStackTrace();

} catch (InvocationTargetException e) {
e.printStackTrace();

}
}

}

public void removeUpdate(DocuinentEvent event) {
updateButtons();

}

public void changedUpdate(DocumentEvent event) {
}

public static void main(String[] args) {
SwingUtilities.invokeLater(new Runnable() {

public void run() {
final SwingCaBIO swingCaBIO =

SwingCaBIO() ;
swingCaBIO.init();

}
});

}
}

Coding JcaBIO: The CaBIOReportEngine Class

In order to provide information on what the report engine is doing while
it is generating the report, the CaBIOReportEngine class extends
Java.util.Observable to send notification to all observers about the
status of the generation of the report.

public class CaBIOReportEngine extends Observable { }

The constructor for the class takes a
g o v . n i h . n c i . s y s t e m . a p p l i c a t i o n s e r v i c e . A p p l i c a t i o n S e r v i c e

276

object that retrieves further information during report generation as
needed.

CaBiOReportEngine contains a number of print methods in order to
generate the reports. These methods print specific information about the
gene or agent (that the user supplied) into the str ingBuf f er object. The
printGene () method takes two parameters to generate the report - the
gene object and the s t r ingBuffer object which will contain the
information to be included in the report:

public void printGene(Gene gene, StringBuffer sb) { }

Within the printGene () method, we implement methods provided by
the caBIO API such as getFullNaine(), getSymbol() and
g e t c i u s t e r i d () to access the relevant information about the input gene.

The pr intPathways() method takes the same two parameters to
generate the pathways report:

publ ic void printPathways(Gene gene, Str ingBuffer sb) {
}

Information on pathways is obtained as a collection of pathway objects
using the method search () from the application service object
appService. The search () method requires two parameters - the type of
the object we want in the collection result and the gene we need the
pathways for as shown below:

f i n a l Co l l ec t ion tmp
appServ ice . sea rch(Pa thway .c lass , gene) ;

Similarly, we use print methods to retrieve information on gene aliases
(pr in tGeneAliases()) , clinical trials (p r i n t C l i n i c a l T r i a l s ()) , Agent
(printAgent ()) etc. The complete code for CaBiOReportEngine is
provided in Listing 6.2.

Listing 6.2. Class CaBiOReportEngine

package o r g . j f b . j c a b i o ;

import gov.nih.nci.cabio.domain.Agent;
import gov.nih.nci.cabio.domain.ClinicalTrialProtocol;
import gov.nih.nci.cabio.domain.Gene;
import gov.nih.nci.cabio.domain.GeneAlias;

cancer Biomedical Informatics Grid 277

import gov.nih.nci.cabio.domain.GeneOntology;
import gov.nih.nci.cabio.domain.HomologousAssociation;
import gov.nih.nci.cabio.domain.Pathway;
import gov.nih.nci.cabio.domain.Protein;
import gov.nih.nci.cabio.domain.Target;

import j ava.text.SimpleDateFormat;
import Java.util.Collection;
import java.util.Iterator;
import Java.util.Observable;

public class CaBIOReportEngine extends Observable {
private static final SimpleDateFormat DATE_FORMATTER =

new SimpleDateFormat("yyyy.MM.dd G 'at' HH:min:ss z");
private static final StatusObject STATUS_REPORT_DONE =

new StatusObject("Report done!");

private ApplicationService appService;

public CaBIOReportEngine(ApplicationService appService)
{

this.appService = appService;
}

public void printGene(Gene gene, StringBuffer sb) {
sb.append("Name: " + gene.getFullName());
sb.append("\n-Symbol: " + gene.getSymbol());
sb.append("\n-Unigene Cluster Id: " +

gene.getclusterld()) ;
}

public void printPathways(Gene gene, StringBuffer sb) {
notifyObservers(new StatusObject("Printing the

pathway report for gene '" + gene.getFullName() + "'..."));
try {

final Collection tmp =
appService.search(Pathway.class, gene);

final int size = tmp.size();
if (size == 0) {

sb.append("Gene not found in any
pathways.");

}

notifyObservers(STATUS_REPORT_DONE);
return;

sb.append(size + " pathway(s) found: \n");
Pathway[] pathways = new Pathway[size];
tmp.toArray(pathways);
for (int i = 0; i < pathways.length; i++) {

Pathway pathway = pathways[i];
sb.append("\t-Pathway name:

pathway.getName());
sb.append("\n\t-Description:

pathway.getDisplayValue());

278

sb.append("\n\t-Pathway Map:
http://www.biocarta.com/pathfiles/" + pathway.getName() +
".asp");

if (i + 1 < pathways.length) {
sb.append("\n");

}
}

} finally {
notifyObservers(new StatusObject("Pathway

report done for gene '" + gene.getFullName() + "'!"));
}

}

public void printGeneAliases(Gene gene, StringBuffer
sb) {

notifyObservers(new StatusObject("Printing the gene
alias report for gene '" + gene.getFullNaine() + "'..."));

try {
final Collection tmp =

appService.search(GeneAlias.class, gene);
final int size = tmp.size();
if (size == 0) {

sb.append("No gene aliases found.");
notifyObservers(STATUS_REPORTDONE);
return;

}
sb.append(size + " gene aliases found: ") ;
GeneAlias[] geneAliases = new GeneAlias[size];
tmp.toArray(geneAliases);
for (int i = 0; i < geneAliases.length; i++) {

GeneAlias geneAlias = geneAliases[i];
sb.append(geneAlias.getName());
if (i + 1 < geneAliases.length) {

sb.append(", ") ;
}

}
} finally {

notifyObservers(new StatusObject("Gene alias
report done for gene '" + gene.getFullName() + "'!"));

}
}

private void printAgent(Agent agt, StringBuffer sb) {
sb.append("Drug Agent Name: " + agt.getName());
final String source = agt.getSource();
sb.append("\n-Agent Source: " + (source 1= null ?

source : "Unknown"));
}

public void printGenes(Target target, StringBuffer sb)
{

notifyObservers(new StatusObject("Printing the gene
report for target '" + target.getName() + "'..."));

cancer Biomedical Informatics Grid 279

try {
final Collection tmp =

appService.search(Gene.class, target);
final int size = tmp.size();
if (size == 0) {

sb.append("No genes found.");
notifyObservers(STATUS_REPORT_DONE);
return;

}
sb.append(size + " gene(s) found: ") ;

Gene[] genes = new Gene[size],•
tmp.toArray(genes);
for (int i = 0; i < genes.length; i++) {

Gene agt = genes[i];
printGene(agt, sb);
if (i + 1 < genes.length) {

sb.append("\n");
}

}
} finally {

notifyObservers(new StatusObject("Gene report
done for gene '" + target.getName() + "'!"));

}
}

public void printClinicalTrials(Agent agt, StringBuffer
sb) {

notifyObservers(new StatusObject("Printing the
clinical trial report for agent '" + agt.getName() +
" • • • • ' •)) ;

try {
final Collection tmp =

appService.search(ClinicalTrialProtocol.class, agt);
final int size = tmp.size();
if (size == 0) {

sb.append("No clinical trials found for
agent. ") ;

notifyObservers(STATUS_REPORT_DONE);
return;

>
sb.append(size + " clinical trial(s) found: ") ;
ClinicalTrialProtocol[] clinicalTrials = new

ClinicalTrialProtocol[size];
tmp.toArray(clinicalTrials);
for (int i = 0; i < clinicalTrials.length; i++)

{
ClinicalTrialProtocol clinicalTrial =

clinicalTrials[i];
sb.append("\n\nTitle: " +

clinicalTrial.getTitle());
sb.append("\n-Status: " +

clinicalTrial.getCurrentStatus());

280

sb.append("\n-Date: " +
DATE_FORMATTER.format(clinicalTrial.getCurrentStatusDate()));

sb.append("\n-Lead Organization Name: " +
clinicalTrial.getLeadOrganizationName());

sb.append("\n-Phase: " +
clinicalTrial.getPhase());

sb.append("\n-Participation Type: " +
clinicalTrial.getParticipationType());

if (i + 1 < clinicalTrials.length) {
sb.append("\n");

}
}

} finally {
notifyObservers(new StatusObject("Clinical

trial report done for agent '" + agt.getName() + "'!"));
}

}

public void printGeneOntology(Gene gene, StringBuffer
sb) {

notifyObservers(new StatusObject("Printing the gene
ontology report for gene '" + gene.getFullName() + "'..."));

try {
final Collection tmp =

appService.search(GeneOntology.class, gene);
final int size = tmp.size();
if (size == 0) {

sb.append("No associated GO terms found.");
notifyObservers(STATUS_REPORT_DONE);
return;

}
sb.append(size + " GO Term(s) found: ") ;
GeneOntology[] geneOntologies = new

GeneOntology[size];
tmp.toArray(geneOntologies);
for (int i = 0; i < geneOntologies.length; i++)

{
GeneOntology geneOntology =

geneOntologies[i];
sb.append(geneOntology.getName());
if (i + 1 < geneOntologies.length) {

sb.append(", ") ;
}

}
} finally {

notifyObservers(new StatusObject("Gene ontology
report done for gene '" + gene.getFullName() + "'!"));

}
}

public void printProteins(Gene gene, StringBuffer sb) {
notifyObservers(new StatusObject("Printing the

protein report for gene '" + gene.getFullName() + "'..."));

cancer Biomedical Informatics Grid 281

try {
final Collection tmp =

appService.search(Protein.class, gene);
final int size = tinp.size();
if (size == 0) {

sb.append("No proteins found for " +
gene.getFullName() + " . ") ;

notifyObservers(STATUS_REPORT_DONE);
return;

}
sb.append("Protein name: ") ;
for (Iterator iterator = tmp.iterator();

iterator.hasNext();) {
Protein protein = (Protein)

iterator.next();
sb.append(protein.getName());
if (iterator.hasNext()) {

sb.append(", ") ;
}

}
} finally {

notifyObservers(new StatusObject("Protein
report done for gene '" + gene.getFullName() + "'!"));

}
}

public void printGenes(Agent agent, StringBuffer sb) {
notifyObservers(new StatusObject("Printing the gene

report for agent '" + agent.getName() + "'..."));
try {

final Collection tmp =
appService.search(Target.class, agent);

final int size = tmp.size();
if (size == 0) {

sb.append("No targets found for " +
agent.getName() + " . ") ;

notifyObservers(STATUS_REPORT_DONE);
return;

}
sb.append(size + " targets found: ") ;
Target[] targets = new Target[size];
tmp.toArray(targets);
for (int i = 0; i < targets.length; i++) {

Target target = targets[i];
printGenes(target, sb);
if (i + 1 < targets.length) {

sb.append("\n");
}

}
} finally {

notifyObservers(new StatusObject("Gene report
done for agent '" + agent.getName() + "'!"));

}

282

}

public void notifyObservers(Object o) {
setChanged();
super.notifyObservers(o);

}

public void printFullGeneReport(Gene geneFound, final
StringBuffer sb, int paragraphNumb) {

sb.append(paragraphNumb + ". ") ;
printGene(geneFound, sb);
sb.append("\n-");
printGeneOntology(geneFound, sb);
sb.append("\n-");
printProteins(geneFound, sb);
sb.append("\n-");
printGeneAliases(geneFound, sb);

}

public void printGenePathwayReport(Gene geneFound,
final StringBuffer sb, int paragraphNumb) {

sb.append(paragraphNumb + ". ") ;
printGene(geneFound, sb);
sb.append("\n-");
printPathways(geneFound, sb);

}

public void printGeneAgentCliTriReport(Agent agent,
final StringBuffer sb, int paragraphNumb) {

sb.append(paragraphNumb + ". ") ;
printGenes(agent, sb);
sb.append("\n-");
printAgent(agent, sb);
sb.append("\n-");
printClinicalTrials(agent, sb);

Coding JcaBIO: The CaBIOSearchEngine Class

CaBiosearchEngine extends Observable to notify observers about what

the search engine is doing so we can keep the users of the application

informed about the status of the search. As described earlier, we provide

two search capabilities in the SwingCaBio application: one to create a Gene

report and one to create an Agent report. We will call the Gene search

method searchGenesWithGenePattern() and the agent search method

searchAgentsWithAgentPattern() respectively.

cancer Biomedical Informatics Grid 283

The constructor for the class takes a
g o v . n i h . n c i . s y s t e m . a p p l i c a t i o n s e r v i c e . A p p l i c a t i o n S e r v i c e
object that helps to run the initial search. Based on the caCORE API, we
create an object called GeneCriteria and set the gene name with the
pattern we're looking for. We run the AppiicationService and supply it
with the object we need to retrieve. We then collect all the genes that
match the input criteria and return the result in an array of Gene objects.

As with the searchGenesWithGenePattern() method,

searchAgentsWithAgentPattern() returns an array of Agent objects

found. The complete code for the CaBioSearchEngine c l a s s is provided

in Listing 6.3.

Listing 6.3. Class CaBIOSearchEngine

package o r g . j f b . j c a b i o ;

import gov.nih.nci.cabio.domain.Agent;
import gov.nih.nci.cabio.domain.Gene;
import gov.nih.nci.cabio.domain.GeneAlias;
import gov.nih.nci.cabio.domain.impl.AgentImp1;
import gov.nih.nci.cabio.domain.impl.GeneAliasImpl;
import

gov.nih.nci.system.applicationservice.AppiicationService;

import java.util.ArrayList;
import Java.util.Collection;
import java.util.List;
import java.util.Observable;
public class CaBIOSearchEngine extends Observable {

private static final StatusObject STATUS_SEARCH_DONE =
new StatusObject("Search done!");

private AppiicationService appService;

public CaBIOSearchEngine(AppiicationService appService)
{

this.appService = appService;
}

public Gene[] searchGenesWithGenePattern(String
geneNamePattern) throws SearchException {

try {
notifyObservers(new StatusObject("Starting

search with gene pattern '" + geneNamePattern + "'..."));
List resultList = appService.search(Gene.class, gene);

Gene[] genes = new Gene [resultList.size()];
resultList.toArray(genes);

284

notifyObservers(STATUS_SEARCH_DONE);
return genes;

} catch (Throwable e) {
notifyObservers(new StatusObject("An error

occured while searching for genes using gene pattern '"
+ geneNamePattern + "'!", 10));

throw new SearchException("", e);
}

}

public Agent[] searchAgentsWithAgentPattern(String
agentPattern)

throws SearchException {
try {

notifyObservers(new StatusObject("Starting
search with gene pattern '" + agentPattern + "'..."));

Agent agentCriteria = new Agentlmpl();
agentCriteria.setName(agentPattern);
List resultList = appService.search(Agent.class,

agentCriteria);
Agent[] agents = new Agent[resultList.size()];
resultList.toArray(agents);
notifyObservers(STATUS_SEARCH_DONE);
return agents;

} catch (Throwable e) {
notifyObservers(new StatusObject("An error

occured while searching for agents with gene pattern '"
+ agentPattern + "'..."));

throw new SearchException(" ", e);
}

}

public void notifyObservers(Object o) {
setChanged();
super.notifyObservers(o);

}
}

SearchException and StatusObject respectively provide mechanisms
to handle errors that occur during the search process and provide the user
with messages on the status of the search. The code for these two classes is
provided in Listing 6.4 and Listing 6.5 below.

Listing 6.4. Class SearchException

package org.jfb.jcabio;
public class SearchException extends Exception {

private Throwable embedded;

public SearchException(String s, Throwable throwable) {

cancer Biomedical Informatics Grid 285

super(s, throwable);
this.embedded = throwable;

}

public Throwable getEmbedded() {
return embedded;

}

Listing 6.5. Class StatusObject

package o r g . j f b . j c a b i o ;

public class StatusObject {
private static final int NO_TIMER = 0;
private static final String STATUS_TEXT = "Ready!";

public static StatusObject STATUS_READY = new
StatusObject(STATUS_TEXT, NO_TIMER);

private String statusText;
private int timer;

public StatusObject(String statusText, int timer) {
this.StatusText = statusText;
this.timer = timer;

}

public StatusObject(String statusText) {
this.StatusText = statusText;
timer=NO_TIMER;

}

public String getStatusText() {
return statusText;

}

public int getTimer() {
return timer;

}

public boolean hasTimer() {
return timer != NO_TIMER;

}

286

Running the JcaBIO Application

As described in Table 6.4, among the caBIO domain objects, the gene
object serves as central hub of the basic research objects and provides
access to object such as organs, diseases, chromosomes, pathways,
sequence data, etc. To begin with, therefore, we will create a Gene report
using the jcaBio application. Fig. 6.4 shows the results of a gene report
conducted to search for genes named "erb". Note that wild-cards (*) can
be used for retrieving information on genes. In this case, for example, we
have performed a search with erb* which as the report indicates has
identified genes called "v-erb-b2 erythroblastic leukemia viral oncogene
homolog 3 (avian)", with the approved Human Gene Nomenclature
Committe (HGNC) gene symbol ERBB3 and "v-erb-b2 erythroblastic
leukemia viral oncogene homolog 2, neur of glioblastoma derived oncogene
homolog (avian)" with the approved HGNC gene symbol ERBB2, both of
which are members of a family of growth factor receptor genes called
epidermal growth factor receptors (EGFR).

Fig. 6.5 displays the results of a pathway search for the keyword erb *.
The search identifies three genes that match the input keyword erb*:
ERBB2, ERBB3 and ERBB4, the corresponding pathways the three genes
are involved in and a link to the graphical representation of the pathways
on the BioCarta website for each (as shown in Fig. 6.6 for ERBB2).

cancer Biomedical Informatics Grid 287

Gene

\iTUfi AyRiit

Run a Gerii7 oc

acch Hesulti

Niiriibei uriesults:

ii a uene.Patltway Searcli

•' (3 gene(sl f Dundl:

logene hoMoiocr 3 . Hame: Y-etb-bZ e r y t h r o b l a s t i c leuJiemia v i r a l i
SYmboi: EfiBB3
Uaigene Cl-ustec Id: 118681
12 GO Term(sJ found: p c o t e i n kinaae a c t i w i t y , proEeiji-tYi^osiiie k inase a c t i v i t Y , transmembre

recepcoE p c o t e i n t y r o s i n e k inase ac t iv i ty , - receptoE a c t i v i t y ^ epidermal grosTtli f a c t o r recspi
. c t i v i t f , ATP b ind ing , i n t e g r a l to plasma membrane, p r o t e i n amino ac id phosphory la t ion ,
.rsnsnieahrane r ecep to r protein CYrnsine k inase s i g n a l i o g pai±i¥aY, membrane, i n t e g r a l to mewt
r ans f e r a se a c t i v i t y
Pcote in iia»e: Receptor t -Ycosine-ptgtein Jiir.ase e3;̂ ljE-3 precuEsoc

~2 gene a l i a s e s fotind: e r h M , EKBE3

^ame: 7-erti-b2 e r y t h r o b l a s t i c leuteemia v i r a l oncogene homoiog 2, neuEo/gl ioblas toma de r i i
loncogene homolog (avian]

Syiflhol: EPEB2
-Unigene Clus te r Id : 44S3S2

GO Termfs) found: p r o t e i n t m a s e a c t i v i t y , p r o t e i n s e r i n e / t h r e o n i n e k inase a c t i v i t y ,
•ptotein-tYEDsine k inase a c t i v i t y , transmeabrane recep to r p c o t e i n ty ros ine k inase a c t i v i t y j
jion-meiibrane spanning p r o t e i n t y r o s i n e k inase a c t i v i t y , r ecep to r s i g n a l i n g p r o t e i n t y r o s i n e
^ m a s e a c t i v i t y , r ecep to r a c t i v i t y , epidermal growth f a c t o r recep tor a c t i v i t y , e l e c t r o n

anspor te r a c t i v i t Y , i r o n ion b ind ing , ATP b ind ing , e x t r a c e l l u l a r r eg ion , e l e c t r o n t ranspoi
p r o t e i n amino ac id phosphory la t ion , ensyme l inked recep to r p r o t e i n s i g n a l i n g pathiaay,
transmembrane recep to r p r o t e i n t y r o s i n e k inase s i g n a l i n g pathway, c e l l p r o l i f e r a t i o n , meiabri
i n t e g r a l to membrane, k inase a c t i v i t y , t r a n s f e r a s e a c t i v i t y , ErbB-3 c l a s s r ecep to r b ind ing

P ro t e in name: Receptor t y r o s i n e - p r o t e i n k inase erbB-S p recur so r
2 gene a l i a s e s Ecrund: e rbb2, EKEB2

Fig. 6.4. Gene report for erb*

tJL'riL' LTJ*

D iuy Ayur i l

I l l l t l <] Gunu SL'dILN

- i _ I F - - il 1 .

Niinitiei ot ifMiltm

H U M d Ot.-iii'1'uthii''idvSL<iiiL~li

^1

Nimt- ' I-LL L „ i-tyfhi L l i ^ t i c leukemia v i r a l oncogene homolog 3 (avian]
Till 1 EFPE

Tll4-=n_ "IIUTH-L I J - llnh-,1
J. irhrijy ci frijiiJ-

-larhfri^ Hike h_ErLE3Path'May
Iie:'-rit.i"i n IFi-ircLegulln receptor degredat ion p r o t e i n - 1 Controls ErbE3 receptor rec^

-Eiit-liTrj^ Haj. h t t p 'www.biocarta. com/pathfile3/h_EEbE3Path¥aY- s.sp
F:ii'hiri_t niait- h_h*'LL;Pathway

"••^r^-Litri in PI r f EREB2 in Signal Transduction and Oncology
Tjrh!rn.Y Hup hrrp- •iTWTj.blocarta.com/pathfiles/h_her2PathTjay.a3p

N:im'' V Pib L„ tiryt-hmblaTtic Isufcemia v i r a l oncogene homolog 2, neuro/g l ioblas toma derives
1 4i-'ij.ti h j m j l y d 1 i i i

Tulul EPBB-
Tiiypn "luTi-L I J" 44ri''^i.

Pdihrcij.f I J-LimJ
I i hnd^ iiiuii^ h_hp-LJPa.th"waY
"Ve-rriprT m Fi ±r if ERSB2 in Signal Trsnsduction and Oncology
Tatliirij, HJ]. hr rp- •wTjiir.blocarta.com/pathflle3/h_her2Pathtpiay.asp
EithiTijt ninp h_i-LCPatlii!;aY
V- Lipt-i n Tiut i - i l Factors I n i t i a t e Ilueosal H&aling

1 liui 1 ' I I l i r I • ! , - i ," ." : . i . , i : : - 1. , . in ••? i . l - : . ' i 11 . .'•.. I ' : " " i .••n IV. . : r

Fig. 6.5. Pathway report for erb*

288

^''•-:M^^'-:^^^
• • • • < - * . - ^ " • • • . • - - • • ' " J

• , , . . • ^ • ' . - . : v i i i lJ iU-
"J™". • • -

;/••* • . . • ; • « « H i « ; - ; 4

«.. .„,- , •

:f" -5̂ ;.
^JiSl: ! l»««w™.«:^^

L J in ;

:̂ 3|i.5ip:*-̂ ^ -̂

•• ' '• • • • • . . .

i .

j . , . ; •

/

Fig. 6.6. Graphical representation of an ERBB2 pathway in BioCarta

Next we will perform a therapeutic agent search for a well-known anti
cancer agent called Taxol. Fig. 6.7 displays the results of a wild-card search
performed with the term TAX*. As expected, the search resulted in reports
on Taxol, a compound present in the bark of the Pacific yew tree {Taxus
brevifolia), which was later found to possess anti-cancer properties and
approved for the treatment of ovarian, breast and non-small cell lung
cancer. The report also presents detailed information on the many clinical
trials that are being conducted using Taxol providing such details as the
name of the study, its status, the organization conducting the study. Phase
of the clinical trials and so on.

cancer Biomedical Informatics Grid 289

Gene
Number of rcsulTs: 0

Riin an Agent Search Clear Reiiort

iSearch Results tor 'TAX''' (2 agent[s) found):

1. Ho caiigets found for TAXOL (OLD HSC) .
-E'Eug Agent Name: TAXOL [OLD NSC)
-Agent Source: Unknoiim
-100 c l in ica l tLial(3) found:

iTitle: Phase I study of 90Y-CC'49 Monoclonal Antibody Therapy in pat ients witli Advanced Mon-Sima i
iCell Lung Cancet
-Status: Complete
-Date: 2001.06.05 AD a t 00:00:00 EDT
-Lead OEganisation Name: UniveEsity of Alabama at EiEmingham
-Phase: I
-Part icipat ion Type: Cancer Center

T i t l e : A randomised Phase I I I t r i a l of sequential chemotherapy using doxorubicin, pac l i taxe l , an
Icyclophosphamide or concurrent doxorubicin and cyclophosphamide followed by pacl i taxel at 14 or
!2l da'/ intecvals in women with node posit ive

Status: Complete
Date: 2003.06.30 AD at 00:33:45 EDT
Lead Organisation Name: Cancer and Leukemia Group B
Phase: I I I
Participation Type: Intergroup

Fig. 6.7. Therapeutic agent report for Taxol

Summary

The NCI caBIG ™ initiative is ushering a new era in cancer research by
providing scientists with standardized tools to access and share
information with one another overcoming cultural, geographical and
technological barriers in ways not conceivable just a few years earlier.

In this chapter, we learnt about the rationale behind the creation of
caBIG™ and the technologies that are being created or developed under
the initiative to enhance the pace of cancer research. We created a very
basic application to demonstrate a few of the many ways in which NCI's
caCORE and caBIO domain objects can be used to retrieve information on
biomedical objects in a way that bridges basic and clinical research.
Needless to say, caCORE offers many more capabilities than what we
have attempted to demonstrate and we encourage readers to take these
small examples as a springboard to gain a better understanding of the
power of the technology and build more complex queries as dictated by
their individual research needs.

290

The power of the caBIG ™ concept is uniting cancer researchers across
the world. A similar initiative was launched by the UK National Health
Service (NHS) for the development of cancer research informatics in that
country through a strategic partnership with the NCICB on the caBIG''"
effort. Both the initiatives will work together to build a truly global
infrastructure for cancer research. These are indeed very exciting times for
biomedical and clinical research and it is hoped that the joint efforts of
people across the world will eventually lead to the demise of the scourge
that we are battling.

As a living testimony of the work being done in this area, the NCI was
recently awarded the 2006 Computerworld Honors 21st Century
Achievement Award for Science for their accomplishment under caBIC^"^
Program. The Computerworld Honors Program was established to honor
people or institutions who apply Information Technology for the benefit of
society. Further information on the award is available at
http://www.cwhonors.org/archives/2006/index.htm and
https://cabig.nci.nih.gov/News_Folder/NCI_award.

Questions and Exercises

1. The NCICB has launched the Open Development Initiative (ODI,
http://ncicb.nci.nih.gov/NCICB/infrastructure/open_dev_initiative) as
an opportunity for biomedical researchers and bioinformaticians to
contribute to on-going development efforts in the cancer domain.
Explore the caBIO, caCORE and other GDI's of interest to you and
think of ways you can participate in this effort.

2. The observation that, "Gene and/or protein X is significantly
overexpressed in a specific cell population, tissue and/or in a
laboratory model of disease Y" is that fundamental first indication of
evidence that feeds hypothesis driven research into the biology and
treatment of disease.

a. What caBIO objects would you need to establish a causative
link between biomolecules expressed in specific tissues (for
example, cerebral cortex) and disease (for example,
Alzheimer's disease)?

cancer Biomedical Informatics Grid 291

b. How would you extend the query to identify pathways that the
biomolecules participate in and discover known chemical
agents that selectively inhibit or modify events along the
pathways?

c. Which caCORE data stores would you mine for such
information?

d. Given that the ultimate aim of caBIG™ is to make biomedical
and clinical data accessible via the grid, how would you
design an application to take the information obtained above
to locate appropriate tissue samples, patient cohorts and on
going clinical trials for further analysis and validation studies?
What technical and non-technical issues would you need to
address to build such an application?

e. Create an application expanding available caBIG™
technologies and data stores that will allow users to run such
queries.

Additionaf Resources

Select NIH/NCI resources

• caBIO - http://ncicb.nci.nih.gov/core/caBIO

• caCORE - http://ncicb.nci.nih.gov/NCICB/infrastructure

• CaDSR - http://ncicb.nci.nih.gov/core/caDSR

• CaMOD - http://cancermodels.nci.nih.gov

• CMAP - http://cmap.nci.nih.gov

• CTEP - http://ctep.cancer.gov/

• CGAP - http://cgap.nci.nih.gov/

• CGAP GAI - http://gai.nci.nih.gov/

• EVS - http://ncicb.nci.nih.gov/core/EVS

• GEDP - http://gedp.nci.nih.gov

292

MMHCC - http://mouse.ncifcrf.gov/

NCI metathesaurus - http://ncimeta.nci.nih.gov/

NCI thesaurus - http://nciterms.nci.nih.gov/NCIBrowser/Dictionary.do

UniSTS - http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=unists

Other biomedical repositories and resources

BioCarta pathways - http://www.biocarta.com/

Gene Ontology Project - http://www.geneontology.org/

IMAGE Consortium - http://image.llnl.gov/

Standards and protocols

ISO/IEC - http://www.standardsinfo.net/isoiec/index.html

ISO/IEC 11179 standard - http://metadata-standards.0rg/l 1179/

SOAP - http://www.w3.org/TR/soap/

ETL tools

Kettle - http://www.kettle.be/

Octopus - http://www.enhydra.org/tech/octopus/index.html

Selected Reading

The caCORE Software Development Kit: streamlining construction of
interoperable biomedical information services. Phillips J, Chilukuri R,
Fragoso G, Warzel D, Covitz PA. BMC Med Inform Decis Mak. 2006 Jan
6;6:2.

cancer Biomedical Informatics Grid 293

Covitz PA, Hartel F, Schaefer C, De Coronado S, Fragoso G, Sahni H,
Gustafson S, Buetow KH. caCORE: a common infrastructure for cancer
informatics. Bioinformatics. 2003;19:2404-2412.

Database resources of the National Center for Biotechnology Information.
Wheeler DL, Barrett T, Benson DA, Bryant SH, Canese K, Chetvemin V,
Church DM, DiCuccio M, Edgar R, Federhen S, Geer LY, Helmberg W,
Kapustin Y, Kenton DL, Khovayko O, Lipman DJ, Madden TL, Maglott
DR, Ostell J, Pruitt KD, Schuler GD, Schriml LM, Sequeira E, Sherry ST,
Sirotkin K, Souvorov A, Starchenko G, Suzek TO, Tatusov R, Tatusova
TA, Wagner L, Yaschenko E. Nucleic Acids Res. 2006 Jan 1 ;34(Database
issue):D173-80.

Appendix

Apache Ant and Tomcat

A web app needs to be deployed on a web application server in order to
be accessible through a web browser. We will use Tomcat - a free, open-
source implementation of Sun's Java Servlet and JSP technologies
developed under the Jakarta project at the Apache Software Foundation
(http://www.apache.org/) - for this purpose. Building refers to the process
of creating a WAR file from the application. Deploying the web app means
the installation of the WAR file on the web app server (Tomcat). This is
accomplished with the help of a make tool called Ant that is portable
across platforms, and developed by the Apache Software Foundation.
Apache Ant and Tomcat are both available from the Apache Ant and
Tomcat Software Foundation web site respectively. We begin with the
installation and configuration of the development tools - the Apache
Tomcat server, and, the Apache Ant build tool that we need to create our
application.

Downloading the Apache Tomcat server

Navigate to http://jakarta.apache.org/tomcat/ and click on Binaries under
Downloads along the left bar (Fig. A.l).

296

USSIS.

. ^ .

Ihi' liikiirlii Sill' Apiuhc Irikdrl ii l_.

J''- Apache Jakarta Project
/

Documcntaticin

* T L I t ; •"

;£]oti is aoiice-m-a-year opportunity to Learn about Ap3che projects and meet old and
new friends in the Apache cormn-jnity.

Jakarta'ml be v^ell represented tC'getlier with the wider Apache Java commimity. The numbii of
ASF piojtul;: likely lo be ofnileitsl lo Jav:i developeiD litid iie./e! been hi^ier KO iTyou'ri nevei
joined us heP^re. there's never been a better time to 5tart the habitl

i i i i i i ia i i i i t ta i t i i iE
T ir.LLit LS tlit ser'leti riitjiiJH tiktis Jiredintlie •.•fELidlF.efeienLt InipleuitiitLiti.iif'.'i the .'̂ • .
. :r '-:~anlJ;-. .- .erTi . . - v ; tcchn:l"jic; ilir Java L'ti-HcraiLdJa-'aJen'tr i a^e ; ipcijiicati.nF
jie 4e-'-ti..|.i:ibv 1:1111 uiiiti the T„ ^ JJ, grai^ii.il. Pi ._. . .

T. re I Jil- l r . ' r l . . p r ! Ml J l l ' . p r i i j l j . ! pjrtli 11 ^i' rjnCfL -m i m t U l l l r l r j r d l i i l . l n the _ | [-

,? J-."-!). L I ii--: Tomcat IS mterided-.: 1 ; a i:>:M :ran.:u of r.ie bert-of-':ieed d-fekt et; fiar.
,a Bl ' l t t r iv. . t ld ^''^e l imtf y u t pLrtli Ipj te lli t lur ' i f eti le^T-l ptrielit I^l''Jei t T l e j n tri'^lt-

Fig. A.l. The Apache Tomcat Projects web page

This will take you to the Binary Downloads page (Fig. A.2).

E^^^^^m 0\f a* i)"^. ra .ft- 1 . 1

!:::JhHtp ;i,l,rH, ,p,d--. .rq.

^ * g - H P - r e , : m : . . . , . . r

diHuuTikui- i

• _ ^ LL

. ,- ^
t>OiiTlJo nil

. 1 i 1

Siippoir

E.. l(. i- i i . . .

sa, .

«,tr,nd. ^ ^ ^

- ^ . _ . , „ . - f. e , . . . , . a M i . „ . ^ c . _- gA.«ch. @ T . . . # l a - n .

che Jakarta Project

BI|illllSl»|pIii::::::::::::::::::::::::=̂ ^̂ ^̂
'?r^!a4-:}.Et.i:, .'f-t-i a f ta , 1̂ 1 ik- . c^nn-^H^d ti n.^:.]ij J f -u^ i lu ia iu- u - u t - n i l l " !

tliH v,.ici . Jie. m r t r t • inttjijtt tiien.iift t.ii;r ft Iw t t

Ui.^it . i i . t th:Ell-.<,mE:.a'.e^ ne.-

• MCestoiie Builds

. Hi^idy Builds

. Dci;jo Builds

Help as e BniM^ are those that ai"e ready for?ni:ie Time. This hidd is "at good as it grtsl"

t h m u- th r7a f rbu3 j"anH; l , 11II iil-,-1 - 1 ; r . n 7 d h u i - liLvr -/-h -rmtt —t' tPt i iniep ' i . n-r

kf-i-Li n il.il.f-.i.l .-•JL.U. 111.- Lcjliii-. F. I .JH e. [--I. 3K -- .• i l l M. t- 1. .im.- lijiii.iii 1.. lid^t

F i J i t l Biul -Uj i f th rihata:>- . - t j i u t . l H J L . wjia-i-- . ""^r L , m t£ Hx •• 11 thflu Tli.--, d f

^ m e M

BJUU

'̂

Fig. A.2. The Apache Binary Downloads page

Appendix 297

Scroll down to where it says, "Tomcat 5.0.19" (at the time of this
writing) and click on jakarta-tomcat-5.0.19.exe. This will download
Tomcat-5.0.19 on your computer. Double-clicking on the downloaded file
will open the Apache Tomcat Setup Wizard that will lead you through the
installation process. For this installation, we are going to choose the
C:\Program FilesXApache Software FoundationXTomcat 5.0 directory.
During the installation, you will be prompted to select a connector port and
a password. Keep the port at 8080 and select a password of your choice
and hit Next (Fig. A.3).

ConFiguration

Tomcat basic configuration.

HTTP/l.l Connector Port

Administi'ator Login

User Name

Password

8080

admin

1 < Back 1 Next > 1

, , ? - ' ;

Cancel 1

Fig. A.3. Apache Tomcat setup

You will also be prompted to enter the location of your JDK (Java
Development Kit) installation because the Apache Tomcat Server is written
100% in Java and uses the compiler (provided in the development kit) to
compile the JSP at runtime (Fig. A.4).

298

Java Viitual Machine

Java Virtual Machine path selection.

Please select the path of the 3VM Installed on your system;

I CAiZsdkl,4,2_03 I [77[

<fiack Install Cancel

Fig. A.4. Apache Tomcat setup

Pressing Install will take you through the rest of the installation process.
At the end of the installation, you will be able to start the server through
the last screen by selecting the "Run Apache Tomcat" option (Fig. A.5).

Fig. A.5. Finishing Apache Tomcat Server installation

Appendix 299

Pressing Finish will start the server and you will see the "Tomcat
Webserver" splash screen for a few moments as the server starts up (Fig.
A.6).

Fig. A.6. Tomcat Web App Server splash screen

You may also see a small icon on your Windows Task Bar at the bottom
right indicating that the server is up and running (Fig. A.7).

Fig. A.7. Tomcat start and shutdown icon

You can open the Console Monitor by right-clicking on the icon and
selecting the "open console Monitor" option. This opens a window
listing out a log of the events that took place during start-up. You can
shutdown the server by selecting the "shutdown:Tomcats" option. This
removes the icon from the Windows Task Bar. To see the server in action,
open up a browser window, type h t t p : / / l o c a l h o s t : 8 0 8 0 in the address
bar and hit enter. This should open up the Tomcat home page and means
that you have configured the server successfully (Fig. A.8).

300

^ Apache Jakarta Project
"" "§fe> P.n -3 : f f i a k a r I a . 0 3 ci e n 0 . o r g ,'

if you're seeing ttiis page via a wê b browser. It means you V̂ e
setup Tomeat suecessftilly. CongmhjIatlonsI

Ab '-/K'U r-Kiy have giiessiiid Iv/ nor.*. t:vs is Ihe dafauil Toim;i: \--'yrf?
c:30'3. It csn b& found on ific bc^i fil^sv^tem u

-r îera "$CAFALIWA_HOME"* i3 .ne x<c! ot ihe Tomcat iPslallatfon
rj'fecior '̂. If you're seeing tiis paoe. and you .ion't think>'>:.u should be,
trien eitner you're eitfi^ra tser^ho has errivs-d at new instalsa îo
Tomcal, .Dryoj'rs an adm'tiisirator VAYJ hasnt QOT hiCiti€-r-3$Typ qj i :^
Tchc. Presiding ihe latter fs fre case, please refer lo t-& M U i l

Fig. A.8. Testing Apache Tomcat Server on localhost

From this page, clicking on Tomcat Administration will take you to the
Tomcat Webserver Administration page (Fig. A.9).

m^ir. »ll{i«l

Fig. A.9. The Apache Tomcat Webserver Administration page

Appendix 301

Enter the username and password you selected earlier to login (Fig.
A.IO, admin and admin, in our case).

hic Ld t Viei/J l-ivor t?i I OD S help

Ecic=. ' Scu-c-i

ht!:p://lo:clho5::80£C,':;dr-ini'

. J: £ vaimm

• L c g j n :

Fig. A.IO. Tomcat Web Server log in

At this point you should see the Tomcat Web Server Administration
Tool (Fig. A.ll) . The Tomcat Web Server Administration page essentially
allows you to administer the server, that is, take care of issues such as
assigning users, setting user roles (admin, manager etc) and privileges, also
checking the services, resources and so on. For example, under
Tomcat/Service/Host, the list of all the web app available on this server is
displayed.

302

Fig. A.ll. The Tomcat Webserver Administration Tool

Managing the Apache Tomcat Server

Let's create a new user called manager, enter a password and a Full
Name (Tomcat Manager, this is an arbitrary string) and assign this user the
role of a manager by checking the "Manager" check box under Role Name
(Fig.A.12).

Appendix 303

j f f l ^B^Si l iS^ i f f iS fe^Bwl i i i f iS i

Fig. A.12. Assigning a new user

Pressing Save will add the user to the profile. Now lets try to login as
manager by clicking Tomcat Manager. This will bring on the login
window. Enter the username and password you just created and press OK
(Fig. A.13).

iMIillKlillliillf'

Tomcat Manager Application

User name; g |

Password;

O Remember my password

OK Cancel

Fig. A.13. Tomcat Manager Application login

304

This will open up the Tomcat Web Application Manager (Fig. A14).

rdit ;[?-. ^iJ.'^,.^« ir^i. u-,ip

a ^ o r t e ^ * * M e J i a .'•?.

**•:- -• •---.. ~i |-hhp://loc-lh05l EOEOhia'Taga^IrrI

™= Apache Jakarta Project
h i * , p ; / / j a < c r l a . d p d c - i S . L

Tomcat Web Application Manager

List ADD icatiens HTML hfenaaE^r HelD

Walcoms 10 Turriat

TuTn.dl ^drriini-lratiur! Appln;jli

JSF2Q E:?rri|ile-.

Tfitii- ^t M^nflgur .Afiplinfl'iriri

Totniat Doe jmerlation

'A'ibds'i Cv[ie[ii '-l^inryertitrit

Zun Slo:' Ral

Sr^rt Stiti M

St^rl Slfl.i EiJ

Start Stoi FiglefiJ !Jrid=plQv

Fig. A14. Tomcat Web Application Manager

Starting the Apache Tomcat server

To start the Tomcat server, open the bin directory of your Tomcat
installation (in our case, C: \Program Files\Apache Software
Foundation\Tomcat 5 .0\bin) and double-click on s t a r t u p . b a t . This
will fire up the server (Fig. A.15). To shut down the server, double-click
shutdown.bat.

Appendix 305

File Edit View Favorite5 Toots Help

} Back " '*;.:" . Search Folders

I C;\Program File5\Apache 5oft^^are Foundaticin\Tomcat 5,0\bin

bootstrap,jar

catalina.bat

catalina.sh

catalina.xml

ccimmons-daemon, jar

commons-launcher, jar

commons-logging-api ,jar

cpappend.bat

digest, bat

digest, sh

jsvctar.gz
launcher, properties

LauncherEiootstrap .class

service.bat

setclasspath.bat

_^setclasspath,sh

;^shutdown,bat -^h

shutdown,sh

| 3 shutdown-using-launcher. bat

3] shutdown-using-launchep^

jSstartup.bat - ^

3) startup,sh

3 startup-using-launcher ,b3t

M startLip-using-launcher,sh

•{^ tomcat, exe

*3tomcatw.exe

Stool -^yrapper.bat

^ tool-wrapper,sh

: ^ tool-vjrapper-using-launcher. bat

^ t o o l -v:rapper-using-launcher,sh

Server shutdown command

Server startup command

Fig. A.15. Starting Apache Tomcat Server

Starting the Tomcat Server brings on a DOS window that provides
information on any error messages encountered during the start-up
process. If everything went ok, it will say "jk running ..." and await for
further instructions (Fig. A.16).

.ai' 12 , 283^ 8 :61:13 PH org.apai:lie .coifote .litfcpll J l t t p l l P i - o t o c o l i
INFO: I f i i t i a l l z l o g Gotfote H I T P / l . l on p o r t i i i i
istis,rti,o|f s e i - v i c e To«icat--St;is.r!d.*^l«o*j
"paclie TQfiicat/4.i .38
ai ' 12^ 2184 8 : e i : i S PM o rg . apache . s tF i i tE . i i -c i l .Propei ' t^ t lessageBes
NFO: i n i t i a l i z i n g J, conf ig=^' oFe-apaqhe . s t r a t s »ut i l . L o c a l S t r i n g s ' j,

IftF 12 , 2 i a 4 fi:S1:1S PH s«'g.apache .stir^iits . o t i 1 ,PFopRrtijHessagellfis
:lNFOs I n i t i a l i s i n g „ conf 10="* o r g . apa«lie . s t r u t s . a c t i o n .ActioiiBesoiu

M- 12„ 2134 8 : a i ^ l S PH opg.apache .sCFiits . i i t i l .PFopeFtsHessage ;
INFO: I I I i i i a l i n i n g , coiif I s - ' oi-y -apaiihu .i>i«lidiip.adiilii .^jjjiliccitloiiJ
iN!ill=^triiB
laF 1 2 . 2184 8:01^21 PM oFg-apachc .coyfote . l i t t p l l . H t t p l i P F o t o c o l s
NFO: S t a r t i n g Cy_yote HTTP/1.1 on puFt 8@Se

< In I t >
i iHul l^ t r i

lap ISj. 2 i84 8 :81 :21 PM org .apache . Jk .co i
INFOs J 1 2 : a j p l 3 l i s t e o i n g on / 8 . 0 . 8 . 8 : 8 !
' " I F 12^ 2084 8 :01 :21 """"

IFO: ah punnim IB-
, l«a i* ta - tonca t -4 .1 .3e \coe f \ j l<2 .p ropeF t i e s

.ChanneISocket in i t

ser.JkNaiii s t a
i\Proai:'-am F i l e

Fig. A.16. Starting the Tomcat Service

306

Installing and Configuring the Apache Ant Build Tool

Ant is a Java-based build tool like Make. It helps to automate tasks like
creating directories, compiling, creating JARs, etc. Navigate to the Apache
Ant Project vi'ebsite h t t p : / / a n t . a p a c h e . o r g / and click on Ant 1.6.1 (the
latest version at the time of this writing, Fig. A.17).

hile tdit isvt l-g.'oriles iools Help

Welcome

Apj'-hiL Ant 1.6.1 1̂ no^v i:3Vi3bt'!': for

The fcF Board ha; appro\/ed th'^ n^w Apacht Lio^n^e 2,0, For a
oopv of that I o^n îE, plsa^i^ £.5e http:.'/-.-A-^vv 3paor,-:,o^j.1">:ri:.e':/,

The Ant l.r..l release i-, idelî rered L̂ 'iih the Apai±i- Lrcense 2 0,

Atit 1 r. 1 fi-ey •ieveral bu.ys, Tio'it notably the fiandling of the
defflu t ne me space for neitec elements

Ant 1 i5,l also introduces initial support for compiling v^ith Jawa 1 l

Apaclie ftnt

Fig. A.17. The Apache Ant Project website

This will take you to a page that lists the available Binary Distributions.
Scroll down and locate the approach binary for your system (Fig. A.18),
here we click on zip archive: a p a c h e - a n t - l . 6. l - b i n . zip.

Appendix 307

j -inp'H^nt.RpRrhp rlho/hlnflni-iinlnnr1,n]l

-a'.'orlEe; w=p I-ledte

O th t 'T i n i r n i r s • hi.iy./;'frii[rLiri:rriiv5.L-urri/aiJtii.-he

Current llelease of ftnt

Currently^ Apache Ant 1 6 : is the best E-^ailahle ^'e-slo^, see the

Ant 1.6.1 hsz been released cm 12-FebrLarv-2uu4 ,?nd may not be
nVrlllHblf O i l rilt I f l l f l) ! ! ^ ful fl frV; (jriyS

. . :rip ai-d-ive: apsche-ant-l .G, i-bin.zip [PGP] [MD3] - 4 —

. .^...c^ jrchiw,:: gp-rh:- ant 1 6.1 bin ta rgz | PC-P | L^::D^_

NiahnW BlillclB

ITvuu .̂..T.h L._. u^^ Lh- iHLe^L AriL Tea
a rinhrk. huiH,

Fig. A.18. Ant binary distributions

Follow the instructions on the installation windows to install the Ant
tool. Since this is a zipped file, you will need an unzipping utility to
uncompress and extract the files. After this step, you should be able to see
the installed files on your computer (Fig. A.19).

IZJH*?l^ilFWfSMF=P

i File Edit View

1 , ^ Back "

Favorites lools Help

' • • " •

i Addioio ._i C;\Program Files

i ..jAccelrys

U_i Adobe

1 _ j apache-ant-1,6,1

!.__jCommon Files
1 IjComPlus Appllcatio

i___jd5viewer

._) eclipse

1 ^Endnote
il_jhex

1 iHex4,l

ns

Search Folders '

__jMSN Gaming Zone _jxerox

..JI^CEI

__jMetscape

..jOnline Services
jOut look Express

._Jpersoft

^QuickTime

-jraster

._jReal
(Roxio

Fig. A.19. Locating installed Apache Ant files

The Ant utility is located in the bin directory (in our case, C: XProgram
Files\apache-ant-1.6.1\bin) (Fig. A.20).

308

rsj^^^^^^^^^ga'dT^
File Edit View Favorites Tools Help

•
) Back " ' ' ; , • Search

.'••J..;:-.;;:•;,;, _ j Ci\Program Files^apache-anli-1, ^ ^

!d]ant Senvset .cmd

iSant .ba l : S l c p . b a t

iSanti.cnnd ^ runant.p!

Olantenv.cmd Qrunant^py

irijanliRun Hrunrc.cmd

H a r t R u n . b a t

•̂ antRun.pl

•-' compiete-ant-cmd.pl

f

»

_ jGo

Fig. A.20. The Ant build tool

You should also be able to see instructions for using Ant by running the
command:

ant —help

on the command-line from the Ant bin directory (Fig. A.21).

:\Pjfeij(raiii F i l e sNapa t l i e - a
i t l op t io i i s J I t a r g e t Lta
p t i o e s :

heIp^ h
""PFO J e c t lie I p , ""p

-rtiacrno-^tlcs

i t-^1.6„l\Jjln>arit "-lielp

- l ifi <patli>
- l o g f i l e < f i l e >

™1 < F i l e >
—loggeF <Glassna"""

-fiQ inpu t
- b u i M f i l e < f i l e >

- f < f i l e >

-keep- f io ing , - k

-iopii t l iar tdles ' < c l a s s >
- f i n d < f i l e >

- s < f i l e >

ps'itit t h i s message
ppirit p r o j e c t h e l p info
p r i n t t h e yers i s r i InfOFHiatlon and e x i t
iJi'int irtfftrnatiflin that mlriiit be lieluful to
diagnose OF pepoFt pFoblei
be e x t p a a u i e t

pi 'irit dBbiigging- inf orriatiori
pFodiice logg ing IrifOFnatioo y i t l i ou t adopo
s p e c i f i e s a patli t o seaFcli f o r jai-s arnl e l e
use giuBn f i l e fOF log

the c l a s s which i s to per fo i
add an i n s t a n c e of c l a s s as a p.„„„-„-, ^^-^-^-^
d© not a l l o y i t n t e r a c t i y e inpu t
use giuBit b i i i l d f i l e

use ydlue f o r giutJii p r o p e r i y
execu te a l l t a p g e t s t h a t ilo not depend
on f a i l e d tapget<K>
load a l l pFopei'tliJS fpap f i l e wi th -B
p F o p e r t i e s t a h i o g p recedeocs
t he c l a s s which w i l l handle i i ipyt Foqoe
CsJearch f o r b u i l d f i l e
t he f i lesy-s tem aod use

Fig. A.21. Running the ant - help command

Appendix 309

Make sure that you are in the right directory before you issue the above
command. In this case, the correct path to ant .bat is C:\Prograin
Fi ies \apache-ant - l .6 . l \b in \ and SO the command must be run from
this directory. If this condition is not met, you will get the familiar DOS
error message:

" ' a n t ' i s not recognized as an i n t e r n a l or ex t e rna l
command, operable program or batch f i l e . "

You will find information on Ant on the website that is simultaneously
downloaded in your installation directory (for example, C:\Program
Fi l e s \ apache -an t - l . 6 . l \we l come .h tml) .

Configuring environmental variables for Ant

To configure the environment variables for Ant on Windows, open:

Start-> Settings -> Control
Panel ̂ System-^Advanced ->Environment Variables

and add the path information for Ant as shown in Fig. A.22 and Fig. A.23.

Path

C;\Progrann Files\apache-ant-1.6,11

Cancel

Fig. A.22. Setting the Ant Path

310

:BH^̂ ^H^S^̂ HH^Hifi

Variable name;

Variable value;

ANT_HOME

C; \Program Files\apache-ant-1.6.1

OK Cancel

Fig. A.23. Setting the ANT_HOME constant

Building and Deploying The Web Application

Building the WAR file

Ant is a Make tool that is used to automate the creation of WAR files. It
uses a build file written in XML usually called build, xml, although the
file name can be changed. By default Ant uses the build.xml file that is
located in the current directory where the user start Ant. The build file
contains a series of instructions to Ant that define the processing required
to successfully deploy the web application on the server. It defines what
are known as "targets", which in turn run discrete tasks - pieces of code
that can be executed independently - to compile the application and install
it on a server. Additional tasks, for example, reloading a modified
application onto a server or removing ("cleaning") older copies of the
application to regenerate their content, can also be defined.

Let's assume the development directory has the following structure:

Src

Lib

resources

web.xml

build.xml

The source directory for the Java code of the web app

The libraries used by the web app

The resources like JSP, HTML, PNG, other images, that are
used by the web app

The web app deployment descriptor

The build description file

Appendix 311

The need for a build tool to deploy the application becomes obvious
when one considers the large number of steps required to perform the same
action manually:

1. Create "dist", the distribution directory
2. Create "WEB-INF" inside "dist", then the "classes" and " l ib"

directories inside "WEB-INF"

3. Compile the Java source classes inside "dist/WEB-iNF/classes"
directory

4. Copy the web.xml file into "dist/WEB-iNF"
5. Copy the JAR libraries needed by the web app from the " l ib"

directory into "dist/WEB-iNF/lib"
6. Create the WAR file using Java jar tool

This process is automated through the use of Ant. First, we create
properties to let Ant know where to define resources; next, for each step
we create an Ant target defining actions to perform. An example of the
PubMed bui ld .xml file is as follows:

<project name="PubMed Pro jec t" d e f a u l t = " c r e a t e - d i s t "
basedi r=" .">

<property naine="dist.home" va lue="${based i r} /d i s t " />

<target naine="create-dist"
description="Create binary distribution">

<mkdir dir="${dist.home}"/>
<mkdir dir="${dist.home}/WEB-INF"/>
<mkdir dir="${dist.home}/WEB-INF /classes"/>
<mkdir dir="${dist.home}/WEB-INF /lib"/>

</target>

</project>

Then by calling the Ant engine and the target we want to run, we will
have the web app file structure created in the d is t directory

ant create-dist or ant

Since we defined create-dis t in the default attribute of the project tag,
the second command line will run the same target as the first command.

312

Deploying the application on Tomcat using Ant

Tomcat provides a manager for web applications (installed by default on
the context path /manager) that allows a user to deploy, install, reload,
remove, start, stop any application or list all the applications available on
the server from the web browser. Tomcat provides Ant tasks that can then
be used inside a target in order to manage the web applications. This
allows us to automate the deployment of PubMed web app by defining
targets in the build.xml file as shown below:

<project nan\e="PubMed Pro jec t" d e f a u l t = " c r e a t e - d i s t "
based i r=" . ">

<property name="dist.home" value="${basedir}/dist"/>

<!—These properties generally define file and directory
names (or paths) that affect where the build process stores
its outputs.

app.name Base name of this application, used to
construct
filenames and directories.

Defaults to "myapp"

app.path Context path to which this application
should be deployed (defaults to "/" plus
the value of the "app.name" property).

build.home The directory into which the "prepare"
and "compile" targets will generate their
output.

Defaults to "build".

catalina.home The directory in which you have installed
a binary distribution of Tomcat 5. This
will be used by the "deploy" target.

dist.home The name of the base directory in which
distribution files are created.

Defaults to "dist",

manager.password

manager.url

The login password of a user that is
assigned the "manager" role (so that he
or she can execute commands via the
"/manager" web application)
The URL of the "/manager" web
application on the Tomcat installation to
which we will deploy web applications and

Appendix 313

web services.

manager.username The login username of a user that is
assigned the "manager" role (so that he
or she can execute commands via the
"/manager" web application)

<target name="create-dist"
description="Create binary distribution">

<mkdir dir="${dist.home}"/>
<mkdir dir="${dist.home}/WEB-INF"/>
<mkdir dir="${dist.home}/WEB-INF /classes"/>
<mkdir dir="${dist.home}/WEB-INF /lib"/>

</target>

<property name="app.name" value="ncbi"/>
<property name="app.path" value="/${app.name}"/>
<property name="build.home" value="${basedir}/build"/>

<property name="dist.home" value="${basedir}/dist"/>
name="manager.ur1' <property

value="http://localhost:8080/manager"/>
<property name="manager.username" value="tomcat"/>
<property name="manager.password" value="tomcat"/>

These properties define custom tasks for the Ant build tool
that interact with the "/manager" web application installed
with Tomcat 5. Before they can be successfully utilized, you
must perform the following steps:

- Copy the file "server/lib/catalina-ant.jar" from your
Tomcat 5 installation into the "lib" directory of your Ant
installation.

Define the appropriate values for the
"manager.password", "manager.url", and "manager.username"
properties described above.

For more information about the Manager web application,
and the functionality of these tasks, see
<http://localhost:8080/tomcat-docs/manager-howto.html>.

<taskdef name="install"
classname="org.apache.catalina.ant.InstallTask"/>

<target name="install" description="Install application to
servlet container">

314

<install url="${manager.url}"
usernaine="${manager.username} "
password="${manager.password}"
path="${app.path}"

war="file:////${dist.home}/${app.name}.war"/>
</target>

</project>

The XML tag taskdef tells Ant to import the installTask Java class
into the build space. The target named " in s t a l l " can use it by defining
the attributes needed by the task to support the install operation on Tomcat.
In a platform independent way, we can deploy the PubMed web app on any
web app servers available on any machine. This is in line with the "Write
Once, Run Anywhere" Java principle.

Version Control Systems

There is no software development without a Version Control System. A
project has a life cycle, where every little change that modifies the
behavior of the application is important and needs to be documented. With
version control systems, a developer can retrieve code written in the past
for a feature that was removed because the project was missing some
resources, but now needs to be put back because of the availability of new
resources. Version control also makes it easier to maintain code when
multiple developers are working together on a project. It is easier to
integrate changes made by individual developers rather than exchanging
the files by hand and incorporating changes using an editor.

Version control systems provide the functionality to compare one
version of code with another, merge multiple versions of the same file,
lock a file to avoid editing by other users while in use, access the
modifications using web interfaces, etc. To use version control, the project
team must first create a repository that it will use to manage the source
files and code versions. Each member of the team then imports the source
code files into the repository.

An example of a version control systems is CVS (Concurrent Versions
Control), which is widely used open source environment. CVS allows
users to import, commit, remove files, manage different code versions,
create branches to develop patches, etc. Here is an example of how to

Addition al Resources 315

import a project, check it out (retrieve a copy of the latest version of a file),
work with it and check it back in the repository, on a Unix system.

First, we create a directory for the repository called /cvs-repository
and we initialize CVS using the command cvs - in i t . Then we create a
project directory called, for example, swingblast. To initialize and then
import our project using CVS, we run the following command on the
terminal:

CVS -d /cvs-repository init

cd swingblast

CVS -d /cvs-repository import -m "Important SwingBlast"

swingblast JFB INIT

The import command above tells CVS to use cvs-repository as the
repository and to import the content of the current directory we are in, into
the CVS directory swingblast, using the vendor tag JFB and INIT as the
release tag.

Now, we back up our source code by running the following command:

tar —cvf swingblast-sav.tar swingblast

To check out the last revision of our project, we issue the following
command:

CVS CO swingblast

With these commands, we have achieved our first integration of the
project in CVS. Another example of version control is Subversion.
Subversion aims to create a more sophisticated tool than CVS. It uses most
of the conventions used by CVS and adds new features like directories,
copies, renames, truly atomic commits, network server options and
efficient handling of binary files among other features.

Additional Resources

• Ant manual - http://ant.apache.org/manual/index.html

316

Apache Ant download - http://ant.apache.org/bindownload.cgi

Apache Software Foundation - http://www.apache.org

Apache Tomcat - http://jakarta.apache.org/tomcat/

CVS (Concurrent Versions Control) - http://www.nongnu.org/cvs/

Subversion - http://subversion.tigris.org

Index

Aaronson, 81
abinitio, 209, 213
about, 18, 20, 21, 26, 29, 33, 47, 48,

87, 156,157,158,159, 160,162,
169,209,231,247,253,257,
258, 261, 265, 275, 276, 282, 289

aboutltem, 59, 60, 69, 71, 72, 74,
113,114,117,236,239

Abstract, 32, 162, 164, 174, 186,
188,193,198,203,205,254

accessible, 295
accession number, 144, 213, 214,

258
accuracy, 1
action, 10, 37, 38, 49, 51, 84, 138,

175,299,311
actionable, 4
ActionEvent, 37, 38, 58, 60, 70, 74,

75,105,112,117,118,135,138,
147, 232, 233, 234, 235, 239,
240,267,270,271,272,273

ActionListener, 37, 38, 58, 60, 70,
74,75,105,112,117,118,138,
147, 232, 233, 234, 235, 239,
240,267,270,271,272,273

actionPerformed, 38, 60,74,75,
105,117,118,135,138,147,
232,234,239,240,270,271,
272, 273

Actions, 38
Activities, 252
Add, 104, 114
addActionListener, 38,60, 74,75,

105,117,118,138,147,232,
234,239, 240, 270, 271, 272, 273

addListeners, 60, 73, 74, 105, 115,
117,137,238,239

addXXXListener, 37
adenine, 53, 54
adverse event, 2, 250
agent, 5, 161,258,260,261,262,

263, 264, 265, 266, 267, 269,
272, 274, 276, 278, 279, 280,
281,282,283,284,288,289

Agent[], 272, 284
AGENT_SEARCH, 263, 267, 270,

271,272
agentCriteria, 284
Agentlmpl, 283, 284
agentLabel, 269
agentPanel, 269
agentPattern, 272, 284
AIDS, 161, 197
alanine, 54
algorithm, 25, 48, 53, 54, 55, 92,

133
alias, 257,278
align,46, 52, 107,247
Alignment, 10, 25, 31, 82, 144, 149,

150,151
Alon, 81
alphabet, 54, 107, 133
Altschul, 25, 82
AMIA, 23
amino acid, 10, 27, 28, 54, 64,125,

132,133,134,210,211
Analyses, 213
Analysis, 2, 27, 209, 250, 255, 256
Analyze, 13
Analyzer, 250
anatomical, 258
Anatomy, 13,251,255
ancestor, 257
ANDed, 197

318

Andonaydis, 23
annotate, 18
annotation, 13,15, 16,18, 19,125,

205,209,221,246,250,251,
253,255,256

Ant, 165, 175, 206, 295, 306, 307,
308,309,310,311,312,313,
314,315,316

ANT_HOME, 310
anti-cancer, 259, 288
Antoniades, 81
Apache, 19, 21,160,165, 172,175,

176,204,206,258,295,296,
297,298, 300, 302, 304, 305,
306,307,316

API, 12,14,16,19,44,81,83,85,
86,151,158,159,165,167,206,
221,223,224,225,252,258,
260,261,263,276,283

APIs, 256
apoptosis, 258
app,295,301,310, 311,312, 313,

314
app.name, 312, 313,314
app.path, 312, 313, 314
APP_NAME, 39, 40, 43, 44, 45, 46,

58,59,60,63,70,71,74,113,
114,117,235,236,239

APP_SERVICE, 267
APP_VERSION, 39, 40, 43, 44, 45,

58,60,63,70,71,74,113,114,
117,235,239

APP_WINDOW_SIZE, 39, 40, 41,
58,60

Appendix, 160,165, 175, 204
Applcation, 85
Apple, 245
application, 5, 6, 8, 9, 13,16,18,19,

21,27,28,32,33,35,36,37,38,
39, 41, 42, 43, 44, 45, 46, 47, 48,
49,50,53,63,64,65,69,78,80,
81,83,84,85,87,88,92,95,
101,103,104, 106,107, 108,
109,110,126,129,132,134,
136,137,139,142,143,151,
152,155, 160,165,166, 167,

168,169, 175,176,179,204,
205,209,212,221,222,224,
231,232,235,242,243,246,
247, 248, 252, 255, 256, 260,
261,262,263,266,276,282,
286,289,291,295,303,304,
310,311,312,313,314

Applications, 37
ApplicationService, 267, 275, 277,

283
Arabic, 205
Arabidopsis, 2, 235
Architecture, 7, 8, 9,10,11,12,16,

18, 19,20,85,86,252,255,256
ARchive, 168, 169, 306
arg, 120,240
arginine, 54
args, 41, 47, 63, 78,124, 193, 241,

266, 275
argument, 227, 231,265
array, 11, 14,65,68,161, 172, 174,

194,195,197,254,283
ArrayList, 112,122,172, 173,174,

228, 243, 283
article, 162, 177, 183, 185, 186, 189,

192, 193, 195, 196,199,200,
202, 203, 204, 205

asp, 278
asparagine, 54
aspartate, 54
assay,3
assembly, 1,249
authentication, 160, 252
Author, 205
automate, 251, 306, 310, 312
avian, 286
Award, 290
AWT, 32, 36, 42,47, 264
BAG, 213,214,219
backreference, 196
Barrett, 153, 293
Base, 312
B-cell, 15
behavior, 314
Benson, 293
billing, 8

319

billion, 1
bin, 304, 307, 308, 309
Binaries, 295
Binary, 125, 254, 296, 306, 307,

311,312,313,315
bind, 211
binding, 13,210
BioCarta, 257, 258, 260,286, 288,

292
biochemical, 4, 5
Biochemistry, 54
bioinformaticians, 4, 7,12, 290
Bioinformatics, 1, 2, 3, 6, 8,11, 12,

13,20,23,41,155,170,171,
173,178,190,253,255,256,
257,293

BioJava, 124, 125, 129,151
biological, 2,4, 5, 21, 26, 152, 155,

249, 257, 258
biologist, 17,25
biology, 1,7,210, 249,290
biomarker, 5
Biomarkers, 5
Biomedical, IX, XI, 3, 6, 7, 8, 10,

11,12,20,21,23,151, 155, 161,
162,169,204,249,253,255,
289,290,291,292

biomolecule, 5
Biosource, 16
biospecimen, 13, 19, 251
Biotechnology, 10, 25,153,161,

293
bits, 4, 10,32, 148,156,260
BLAST, 10, 21, 22, 25, 26, 27, 28,

29,30,31,32,33,34,35,47,63,
64, 65, 67, 68,71,73,78, 79, 80,
81,82,83,84,85,86,87,88,89,
90,91,92,93,94,95,96,98,99,
100,101,102,103,104,106,
108,109,110, 111,112, 113,
115,116,118,121,122,124,
132,139,140,141,142, 143,
144,145, 146, 147,148, 151,
152,156,209,212,221,232,
234, 245, 246, 247

BLAST_PROGRAMS_DNA, 65,
68,71,73,113, 115

BLAST_PROGRAMS_PROTEIN,
65,71,73, 113, 116

BlastException, 86, 87, 89, 90,91,
93,94,95,96,98,99,101,102,
112,121

BlastHit, 148
BlastHsp, 148
BLASTing, 35
BlastManager, 86, 87, 89, 90, 91,

92,93,98,99,112,121
BLASTN, 28, 33, 64, 67, 68, 78,

104,108, 109, 246, 247
BLAST?, 28, 33, 64, 68, 78, 247
BLASTX, 28, 64, 65, 67, 68,71, 78,

104,108,109,113,212,247
block, 84, 170,181,231,242
BMC, 23, 292
boolean, 51, 61, 67, 68, 75, 77, 89,

96,97,100,102, 117,118,119,
122,123,125,126,131, 132,
134,135,138,143,224,229,
234,241,265,274,285

border, 42
BorderLayout, 40, 46, 59, 60, 71,

72,105, 114,115, 142,233,234,
235, 236, 237, 238, 263, 268,
269, 273

box, 302
bp, 61, 62, 76, 94, 119,218
Branscom, 1
browser, 129,155, 156,158,166,

167,168,169,171,213,215,
295,299,312

Bryant, 293
Buetow, 23, 293
BufferedReader, 95, 98, 102, 131,

166,172,173,181,182, 191,201
build, 295, 306, 308, 310, 311, 312,

313,314
build.home, 312, 313
build.xml, 310,311,312
Burge, 212,247,248
Business, 8, 48

320

button, 33, 37, 38, 39,46, 67,104,
105,108, 134,137,138, 139,
144,164,166,170,179,215,
232, 245, 261

buttonPane, 40, 60,72, 115, 233,
234, 237, 238

byte, 2
ByteArrayOutputStream, 94, 95, 98,

101,102
C, 23,38,42,53,54,55, 133,134,

194,207,247,248,293,297,
304, 307, 309

C++, 42
caAdapter, 8
CaArray, 13, 14,15, 16,250
caBIG, IX, XI, 3, 6, 7, 11,12, 13,

14, 18, 20, 21, 22, 249, 250, 252,
253,254,255,289,290,291

caBIO, 11,14, 16,253,256,257,
258, 259, 260, 276, 286, 289,
290, 291

CABIO_HTTP_SERVER_URL,
267

CaBIOReportEngine, 262, 267, 275,
276, 277

CaBIOSearchEngine, 262, 267, 282,
283

caCORE, 8,11,14, 18, 20, 23, 253,
255,256,257,259,261,263,
283,289,290,291,292,293

caDSR, 11,14, 19,20,22,253,256,
291

CAE, 13
Caenorhabditis elegans, 2
caFE, 255
caGrid, 11, 12,252
callback, 37
caMOD, 255, 259, 291
cancer, 2,3,4, 6,11, 14,16,18,19,

20,21,23,205,249,250,251,
253, 254, 255, 256, 257, 259,
288,289,290,291,293

cancer center, 6,18, 19, 21, 250
cancer centers, 6, 18,19, 21, 250
Canese, 293
carbohydrates, 5

case, 301,304,307, 309
case-insensitive, 162
Casting, 225
catalina.home, 312
CaTIES, 14, 18, 19,251
Caucasian, 27
causation, 4, 6,12
causative, 5,161, 290
CaWorkBench, 13, 16,22
cbDNA, 68
cBio, 17
cbProtein, 65,66, 69
CDE, 20, 23, 252
cDNA, 256
CDS, 215, 218, 219, 236
CDUS, 250
cell, 4, 12,13, 16, 17, 27, 258, 288,

290
cellular, 1,4,26,210,258
cerebral, 290
cerebral cortex, 290
CFTR, 29, 50, 54, 56, 57, 58,106,

108,129,130,211
CGAP, 255, 291
CGI, 155, 157, 158
Channel, 36
char, 105, 120, 194, 195, 203
character, 51
charLo, 194, 195,203
charUp, 194, 195,203
checkboxes, 64, 81
chemical, 5, 291
Chemistry, 54
Chetvernin, 293
child, 42
Chilukuri, 23, 292
chips, 255
chloride, 27
choice, 297
cholesterol, 5
Chou,82
Chris, 212
chromosome, 213, 243
Church, 293
citation, 162,178,183, 186, 205
citationReader, 182,183, 191

321

class, 35, 39, 41, 42, 43, 44, 45, 47,
58,63,70,85,86,87,88,89,90,
91,92,93,94,98,99,112,113,
125,129,131, 149,158, 168,
169,173,187,198,221,223,
224,225,226,227,228,231,
232, 233, 234, 235, 240, 242,
243, 262, 266, 267, 275, 276,
277,278,279,280,281,282,
283,284,285,314

Classes, 32, 88, 261
classification, 15,215
ClassNotFoundException, 93, 113,

227, 240
Clear, 38, 39, 40, 60, 72, 115, 137,

237,261,273
click, 37, 38, 176, 245, 295, 297,

306
client, 10, 12,84, 155,156,157,

159,169,259
Clinical, 6,13, 18,19, 250, 251, 280
ClinicalTrialProtocol, 258, 276, 279
cloning, 81
Close, 48, 147
cluster, 258, 260, 277
clustering, 7
CMAP, 255, 256, 257, 291
code,310, 314, 315
codon,218
Cold Spring Harbor Laboratory, 1
collaboration, 3,11
collection, 3, 10,147, 167,172,173,

174,228,243,276,277,278,
279,280,281,283

color, 147, 149, 151,161,170,171,
173, 178,181, 182, 188, 189,
190,193,195, 196,198, 199,
200,201,204

ColorFormatter, 147,149
combo, 65, 67, 68
command, 156, 157, 172,175, 260,

261,263,308,309,311,315
command-line, 308
community, 3, 8,12, 14, 250, 252,

255
compatibility, 11, 252

compatible, 7
compilation, 175
Compile, 48, 106,175, 297, 310,

311,312
compiler, 297
compiling, 306
complement, 1
complementary, 81
compliance, 7
compliant, 14
component, 9, 11,12, 14,16,37,45,

46,48,49,68,77,123,159,174,
234, 250, 255

computer, 156, 253
Computerworld, 290
computing, 8, 12, 15, 20, 249
conductance, 29,106
confidence, 6
confidentiality, 8
configuration, 168, 169,295
configured, 90, 224, 299
Configuring, 306, 309
Connectivity, 19
connector, 297
Console, 299
Consortium, 1,15, 255, 256, 257,

258, 292
constant, 310
construct, 312
constructor, 44, 48, 224, 263, 275,

283
container, 42,43, 45,158, 159, 160,

165,263,268,313
content, 18,19,45, 125,158, 159,

166,170,213,215,232,252,
262,310,315

contentPane, 263, 268
Content-Type, 95, 101, 156
context, 312
control, 314, 315
Controller, 9, 10,160
convergence, 249
Coronado, 23, 293
Courier, 52, 59,107,148
covalent, 210
Covitz, 23, 292, 293

322

cPath, 13, 17, 18
CpG, 210,211
credentials, 176
cross-disciplinary, 250
cross-reference, 253
CSM, 8
CTEP, 259,291
CTMS, 6, 250
curated, 258
custona, 313
cutoff, 144
cut-off value, 213
cutting-edge, 3
cysteine, 54
cystic fibrosis, 27, 29, 81, 106
cytoplasmic, 27
Cytoscape, 18
cytosine, 53, 54, 211
Danio rerio, 2
database, 8, 14,16, 18,19, 25, 26,

27,28,29,31,33,34,35,65,66,
67,68,74,81,82,92,94,103,
116,118,120,144,153,157,
160, 161,172,205,206,212,
254, 255, 259, 293

database-independent, 19
DataOutputStream, 94, 95, 98, 101
DataRetriever, 168, 169
DATE_FORMATTER, 277, 280
debug, 42
decipher, 17, 247
deciphering, 26
declaration, 41,42, 87, 225
declare, 43, 55, 87, 170,184,195,

227
default, 35,44,45,48, 62, 68, 76,

119,213,223,260,264,310,
311,312

Define, 313
definition, 10, 35, 42, 87, 144
de-identification, 252
delegating, 265
delegation, 36
delete,39, 111,122,181,189,191,

200,201,265,274
delimited, 48

deliver, 8
deliverables, 252
delivery, 252
demise, 290
denoising, 17
density, 213
dentistry, 161
deoxyribose, 53
deploy, 12, 160,165, 310, 311,312,

314
deployed, 295,312
Deployment, 168, 310, 312
Description, 11, 13,45,88,257
Descriptor, 168,169, 310
design, 3, 7, 8, 9, 14, 19, 36, 49, 84,

85,86,92,169,204,225,254,
263, 291

destroy, 159
Devare, 81
develop, 2,8,12, 17,151,246
developer, 8, 92,170, 231, 252, 263
development, 1, 5,12, 18, 32, 151,

155,175,250,252,253,255,
290,295,297,310,314

device, 7
diagnose, 5
diagnosis, 255
diagnostics, 5
DiCuccio, 293
differential expression, 5,12
digestive, 27
Dimension, 39,40, 41,46, 58, 59,

60,66,67,70,71,72,73,74,
113,114,115, 116, 117, 142,
233,234,235,237,238,239,
264, 267, 268, 269, 270, 273

dinucleotide, 211
diplay, 112
directories, 306, 311, 312, 315
directory, 11, 35, 168, 169, 297,

304,307,308,309,310,311,
312,313,315

disable, 67,137, 138,263
Discover, 28, 291
discovery, 2, 11, 13, 26, 209, 250
Discrimination, 250

323

disease, 2, 4, 5, 6, 7,12,13,17, 18,
21,27,250,251,257,258,290

display, 8, 41,48, 60, 62, 63,72, 77,
115,120,143,144,162,164,
205,238,260,261,263,265

dist.home, 311,312, 313, 314
distAVEB-INF,311
distAVEB-INF/classes,311
distAVEB-INF/lib, 311
distinct, 8,10
distribute, 8, 252
distributed, 2, 6, 8,12,13,15
distribution, 311,312, 313
DNA, 1, 10, 17, 20, 21, 25, 28, 33,

53,54,55,56,58,61,62,65,67,
68,69,71,75,76,77,78,81,
105,107,113, 119,122, 123,
124, 133, 134, 135, 149, 161,
209,210,211,212,213,218,
247, 255, 257

docListener, 137,138
DOCTYPE, 156
document, 137,138, 156,157,166,

186,193,252
documentation, 22, 44, 252, 253
DocumentListener, 137, 235, 241,

263, 264, 267, 268
domain, 6,19, 26, 210, 250, 252,

254, 256, 257, 258, 266, 276,
277, 283, 286,289, 290

Doolittle, 26, 81
DOS, 305, 309
double-click, 304
Double-clicking, 297
double-helix, 20
double-stranded, 213
download, 297, 316
Downloading, 295
Downloads, 295, 296
downstream, 221
draw, 6, 21,26,42
driver, 89, 90, 91, 93, 223, 224, 227
drop-down menu, 64, 78
Drosophila melanogaster, 2
drug, 5, 258, 259
duplicate, 254

dynamic, 18, 19, 158, 159
e-business, 6
Edition, 2, 81, 159
editor, 112,314
EGFR, 286
electronic, 7
electrophoresis, 17
Electrotechnical, 256
element, 23, 26, 36, 194
elucidation, 20, 21
embedded, 181, 209, 255, 284, 285
enable, 2,10, 14,15, 19,63,67,

104,137,221,242,247,251,
253, 254, 262, 263

enabled, 67, 68,137, 241, 265, 274
enableFunctions, 67, 69, 74, 75, 77,

105,117, 120, 122, 123, 137,
138,238,240,241

enables, 7, 14, 68, 80, 83, 221, 261,
265

encapsulate, 36, 84
encapsulated, 9, 87
encapsulating, 38
encoded, 26, 209, 210
encoding, 26, 81, 156, 257
engine, 7, 12, 13, 18, 19, 21, 29, 32,

33, 92, 172, 251, 263, 275, 282,
311

engineering, 32
Ensembl, 152,153,254
Enterprise, 2, 6, 7, 8, 10,15, 19, 20,

21,159,253,255,256
enterprise-level, 2
Entrez, 152,161, 205, 206, 253, 258
EntrezGene, 258
enumerated, 210
enumeration, 160
environment, 8, 17, 90, 204, 225,

230,309,314
enzymatic, 211
enzyme, 26, 211
epidermal, 286
era, 3, 289
erb, 286, 287
e-research, 6, 7

324

error, 64, 84, 87, 88, 89, 91, 132,
134,136,169,180,181,223,
265, 274, 284, 305, 309

errorDump, 265, 271, 272, 274
erythroblastic, 286
EST, 258
etiology, 257
ETL, 253, 254, 255, 292
eukaryotes, 211
eukaryotic, 213
Evaluation, 259
eValue, 66,67, 74,94, 103,117,

118,120,144
E-Value, 66, 74, 117,148
EVALUES, 65,66, 71,74, 113,117
event, 20, 36, 37, 38, 42, 58, 70,

105, 112,135,170,233,235,
264,265,267,268,270,271,
272, 273, 274, 275

event-dispatching, 37, 47,48, 231,
264, 265,266

EventListener, 36
EVS, 19,20, 22,253,256,291
Exception, 76, 89, 90, 91, 126, 127,

135, 143, 169, 170, 181, 190,
193, 200, 224, 225, 227, 229,
231,284

execute, 37, 231,312,313
Execution, 84
exit,38,45,60, 74,117, 181,239
EXIT_ON_CLOSE, 40, 45, 59, 63,

71,114,236,263,268
exon, 210, 212, 213, 217, 218, 238
expenditure, 250
experiment, 4, 14,15, 17, 258
experimental, 3, 5, 7,13, 14, 204,

249
explicit, 107
Express, 255
expression, 4, 5, 13, 14, 15, 16, 17,

18, 152, 153, 172, 184, 194, 196,
197,255,256,257,258

Extraction, 14,251,254
Extract-Transform-Load, 254
factory, 263
fail-safe, 7

false, 67, 68, 69, 77, 89, 95, 97,100,
101,117,123,137,138, 143,
146, 224, 229, 234, 238, 240,
268,270,271,272,273

Pasta, 33, 34, 35,48, 49, 50, 51, 52,
61,75,80,81,104,105, 107,
108,118,126,129,135, 136,
137,218

fastaPormatted, 51, 52, 61, 62, 75,
76,118,119,127,138

feature, 314
federal, 7
federated, 7,8,18,252
federation, 255
Federhen, 293
File, 98,103, 111, 112,121,164
filter, 205
financial/billing, 250
fingerprint, 5
flag, 132
focus, 3, 37,48, 49, 50, 51,104
FocusEvent, 49, 51, 58, 61,70,75
focusGained, 49, 51,61,75
FocusListener, 48, 49, 51, 58, 61,

70,75
focusLost, 49, 51,61,75
font, 13,52, 53,59, 107, 108, 114,

146,149,170,171,173, 178,
181,182,188,189,190, 193,
195,196,199,200,201,204,
234, 237, 268

form, 89, 160, 166,170,171, 173,
178,179,190, 191,201,210,
211,254,263

format, 15, 33, 34, 35, 37,41, 47,
48,49,50,51,52,53,61,75,80,
104,105,107,108,112,114,
118,120,126, 129, 134, 136,
137, 138, 139, 144, 145, 149,
164, 168, 183, 184, 218, 254, 280

Formatt, 200
formatted, 50, 51, 52, 53, 106, 107,

129,135, 137,254
formatter, 147, 149
formatting, 51, 80, 104, 108,129

325

foundation, 19, 32, 160, 175, 206,
295,297,304,316

fragment, 106
Fragoso, 23, 292, 293
Frame, 42, 45, 217, 218, 233,263,

266
framework, 2, 9,12,19, 32, 35, 38,

42,43,48,83,85,152,160,165,
178,221,223,225

freeze, 266
frequency, 211
fruit fly, 2
FTP, 10
function, 5,17, 19, 26, 35, 67, 68,

111, 126, 152,212,255,260,263
functionality, 313, 314
FunctionExpress, 250
fundamental, 20, 152, 204, 209, 290
further, 305
GAI, 255, 291
gateways, 157
GEDP, 255, 256, 291
GenBank, 33, 64, 81, 83,124,125,

126, 127, 128, 129,130, 131,
134, 137, 140, 141, 142, 143,
144,145, 146, 151,152,257,258

GENBANK_URL, 129, 131
GenbankDB, 126,129, 131
gene,4,5, 10,12, 13,14, 15,16, 17,

18,26,28,29,50,54,81,152,
205,206,207,209,211,212,
213,215,217,218,221,231,
232, 242, 246, 247, 248, 250,
253, 254, 255, 256, 257, 258,
260,261,262,263,264,265,
266,267,269,270,271,274,
276,277,278,279,280,281,
282, 283, 284, 286, 287, 290, 292

Gene/Pathway, 260, 261, 271
GeneAlias, 257, 276, 278, 283
GeneCriteria, 283
GeneOntology, 277, 280
genePanel, 269
genePattern, 264, 270, 271
genetic, 2, 4, 209, 255, 258

Genome, 1, 17,20,21,23, 153,211,
213,248,249,250,255

genome-sequencing, 209
genomic, 10, 11,16,211,212,213,

247,251,255,257,258
Genomics, 1, 20, 207, 249, 250
GenScan, 215, 221, 222, 223, 224,

225,226,227,228,233,235,
240, 241

GENSCAN_HOSTNAME, 228
GENSCAN_PATH, 228
GENSCAN_PORT, 228
GENSCAN_URL, 228
GET, 84, 155, 156, 157, 170, 171,

173, 178,190,201,222
getter, 87
GGF, 12
GI, 33, 35, 75,124, 126,128, 129,

134, 136, 137,140,142, 145, 243
Gish, 82
Global, 12, 22,25, 290
Globus, 12
glutamic, 54
glutamine, 54
glycine, 54
GMT, 156
GO, 254, 258, 260, 280
GoOntology, 257
Governance, 252
graphical, 9, 33, 34, 36, 48, 112,

143,144,258,286
gray, 266
green, 197
Grid, 3, 6, 11, 12,249,252,255,

291
GridForum, 12, 22
Grzelczak, 82
guanine, 53, 54, 211
GUI, 35, 39, 41,45, 47,48, 63, 64,

80,86,103,105
Guidelines, 22, 207, 252
Gustafson, 23, 293
HapMap, 250
hardware, 38
Hartel, 23, 293

326

HashMap, 89, 98, 112, 120, 223,
228, 229, 235, 240

HeadlessException, 233,263, 267
health, 7, 161,249,290
healthcare, 8, 253
heart, 5
heavyweight, 42
helix, 210
Helmberg, 293
Helper, 235,241, 242, 243
heredity, 257
heuristic, 25
HGNC, 205, 286
HGP, 1,21,22
Hibernate, 19, 22
hierarchy, 35, 42, 43, 162
hieroglyphic, 1
high-throughput, 3, 249
HIPAA, 7
histidine, 54
histology, 14
Histopathology, 258
Hit_accession, 144
Hit_definition, 144
Hit_hsps, 144
Hitjd, 144
Hit_len, 144
hits, 26, 29, 31, 33, 81, 95,148,151,

152,232
HIV, 161,162, 163,176, 177, 194,

197
HMM, 210, 248
Homo sapiens, 1, 16
homolog, 286
HomoloGene, 152, 254, 258
homologous, 28, 248, 257
homology, 10,26,28
Hood, 81
HSP, 144, 148
Hsp_bit-score, 144
Hsp_evalue, 144
Hsp_number, 144
Hsp_score, 144
html, 21, 22, 81, 117, 118, 129, 148,

149,152,156,158,161, 166,
167,168,169,170,171,173,

174,178,188,189, 190, 191,
193,195,197,198,199, 200,
201,204,206,213,222,242,
247, 255, 292, 309, 310, 313, 315

HTTP, 10, 11,18,19,83,84,155,
156,157,158,159,165,169,
222, 225, 258
//ant.apache.org/, 306, 315, 316
//jakarta.apache.org/tomcat/, 295,

316
//www.apache.org, 295, 316
//www.apache.org/, 295

HTTP-encoded, 83,93
HttpServlet, 159, 169, 173,187,

197, 198
HttpServletRequest, 169, 170, 173,

179, 187,188,190,197, 198
HttpServletResponse, 166,169,170,

173,187,188,198
hub, 36, 286
HUGO, 205, 206, 207
Hunkapiller, 81
hybridization, 14
hydrophilic, 27
hyperlink, 174, 176
hypothesis, 4, 12,204,290
icon, 299
ICR,6,13
ID, 29, 124, 125,127,129, 131,

134,143, 183,186,254,257,
258, 260

identification, 10, 81, 248, 256
Identifier, 84, 162
identify, 5, 6, 13,15, 16, 18, 21, 81,

160,247,291
identity, 8, 17,26
Ids, 172
lEC, 256
IHGSC, 1
image, 7, 168, 256, 292
Imaging, 6, 251
immunoglobulin, 26
immunology, 258
implementation, 8, 63, 87, 89,90,

92, 221, 223, 225, 226, 227, 246,
295

327

Implementing, 92
import, 36, 37, 39,42, 55, 58, 70,

89,98,112,125, 126,131, 169,
173,187,197,198,223,228,
233,235, 242, 243, 266, 267,
276,277,283,314,315

in vivo, 251
index, 21, 22, 81, 152,156,206,

234, 255, 259, 290, 292
industry, 3
infectious, 2
Informatics, 3, 6, 23, 249,250, 255,

290, 293
Information, 8, 10,14, 17, 25,153,

161,251,276,290,293,305,
309,313

infrastructure, 6, 7, 8, 11, 20, 22, 23,
251,252,253,256,257,290,
291,293

inherit, 43
inherited, 27
inherits, 42, 225
inhibit, 5, 291
inhibiting, 4
init, 159, 218, 233, 241, 263, 266,

267,275,315
initation, 218
initial, 29, 283
initialization, 168, 227
initialize, 89,159, 315
initializing, 227
initiation, 210, 218
initiatives, 3, 290
input, 10,26, 27, 28, 31, 32, 33, 34,

35,36,41,48,63,64,105,106,
132,133,134, 136,144, 148,
170, 171,173,178,179, 190,
201,204,213,215,218,247,
254,276,283,286

InputStream, 182,191,193
InputStreamReader, 95,98, 102,

131,172, 173,181,182, 191,201
insert, 137
insertUpdate, 137, 241,264, 268,

274

install, 160, 175, 298, 307, 310, 312,
313,314

installation, 14,175, 176, 295, 297,
298,304,307,309,312,313

installed, 307, 312, 313
Installing, 306
instance, 45, 47, 87, 88, 91, 92, 93,

125,158,169,221,223,225,
226, 257

instantiate, 38
instantiating, 42
institution, 260
Insurance,7
int,45,49, 51,52, 55,56, 58,61,

62,65,66,67,68,69,71,73,75,
76, 77, 78, 97, 99, 100, 103, 105,
106,111,113,115,116, 118,
120, 121, 122,123,124, 127,
131,132, 134, 135, 148, 149,
174,181,185,186,189,191,
192,195,199,200,201,202,
203, 228, 229, 234, 243, 264,
267, 270, 271, 272, 273, 277,
278,279,280,281,282,285

integral, 253
integrate, 4, 6, 16, 20, 249, 251, 252,

260,314
integrated, 3,10, 212, 250, 256
integrating, 12, 13,17,256
Integration, 11,12, 13,17, 250, 251,

253,254,315
integrator, 250
integrity, 8
intellectual, 252
interaction, 13,18,19, 205
interchange, 6, 11
interface, 9,14, 16, 18, 19, 32, 36,

48,81,85,137,151,155,157,
158,159,205,225,235,242,
250,252,257,261,263,264

intergenic, 213
International, 1,15, 54, 256
Internet, 6,10, 11,20, 156
interoperability, 11,12, 252
interoperable, 6,10, 15, 23, 250,

255, 256, 292

328

interoperate, 11
interplay, 7, 211
interpretation, 14
interrupt, 38
intervening, 211
intervention, 5, 257, 258
interventional, 5, 15
intron, 210
intronless, 211
inventory, 13,19, 251
invertebrate, 249
investigation, 13
invisible, 45
invoke, 10, 11,265
invokeAndWait, 143, 265, 266, 275
invokeLater, 41, 47,48, 63, 78, 121,

124,127,147,241,264,265,
266, 273, 275

lOException, 95, 98, 101, 102,131,
170,173,181,182,188, 189,
191,198,199,201

Ishmukhamedov, 23
islands, 210,211
ISO/IEC, 256, 292
isochore, 213,215
isoleucine, 54
iterate, 68, 174, 178, 194
iterating, 6,160
iteration, 179
iterative, 32
Iterator, 148, 173, 174, 277, 281
lUPAC, 54
lUPAC-IUB, 134
j++, 106, 120
Jakarta, 172, 183,196, 206, 258,

295
JApplet, 43
jar, 168,172,222,258,259,311,

313
Java, 1,2,3, 16, 18, 19,21,32,35,

36, 37, 38, 39, 41, 42, 44, 45, 47,
58,70,81,85,87,89,90,91,92,
93,98,103,112,131,152,155,
158, 159,160,165,167, 168,
169, 170,171,172, 173, 178,
187,190,198,204,206,222,

223, 224, 225, 226, 227, 228,
231,232,233,235,243,257,
258,259,267,275,277,283,
295,297,310,311,314

Java Bean, 257
Java-based, 306
JButton, 37,40,43, 59, 60,71,72,

105,113,114,115,232,233,
234,236,237,267,270,271,
272, 273

JcaBIO, 260, 261, 262, 275, 282,
286

JCheckBox, 65, 66, 68, 71, 73, 77,
113,115,116,122,123,234

JComboBox,65,66, 68, 71,74, 113,
116,117,123,236,238,239

JComponent, 39,43, 58,71,77,
113,236

JDBC, 19
JDialog,43,146,221,233
JDK, 297
jfb, 35, 39,41,58,70, 89,91,92,

93,98,112,113,129,131,173,
187,197,221,222,223,224,
227,228,232,233,235,239,
240, 242, 266, 276, 283, 284, 285

JFC, 32
JFileChooser, 111, 122
JFrame, 39,40,41,42,43,44,45,

58,59,63,70,71,112, 114,235,
236,263, 267, 268

JgenScan, 224, 227, 228, 240
JGI, 1
JLabel, 40,46, 59, 65, 66, 72, 73,

74,114,115, 116, 117, 142,236,
237, 238, 239, 263, 267, 268,
269, 270

JList, 233, 234
JMenu, 40, 43,46, 59, 69, 71,72,

114,146,147,236
Jmenultem, 43
Joint Genome Institute, 1
journal, 162,163, 183, 186, 192,

193,203
JPanel, 37, 40, 43, 45, 46, 59, 60,

65,66,71,72,73,74,105,114,

329

115,116, 117,142,233,234,
235,236,237,238,239,263,
268, 269, 270, 273

JQBlast, 83, 89, 91, 92, 93, 96, 98,
99,113

JRE, 2
JScrollPane, 39,40, 43,46, 59, 71,

72,113,114,147,233,236,237,
268, 269

JSP, 18, 19,160, 168, 204, 295, 297,
310

JSTL, 160
JTextArea, 38, 39,40,43,46, 59,

71,72,113,114, 146,234,236,
237,264,267,268,270,271,
272, 273

JTextField, 263, 267, 269, 270
just-in-time, 2
JVM, 47, 89, 92, 93,169, 223, 227,

231,265
JWindow, 43
Kapustin, 293
Karlin, 212, 247
Kenton, 293
Kerem, 81
Kettle, 255, 292
keyboard, 37, 38, 266
key-value, 89
keyword, 42,43, 44,48, 87, 92, 161,

162,166,170,176,177, 178,
179,181,182,189,199,231,286

Khovayko, 293
kidney, 5
kilobase, 213
kinase, 26
Kit, 8, 23, 292, 297
knowledge, 4, 6, 20, 155, 161, 249,

253
label, 50,142, 214,260
laboratory, 4, 6, 26, 250, 251, 290
laboratory-based, 4, 6
Lander, 23
Latin, 205, 209
layer, 8
layout, 19, 32, 35, 45, 46, 63, 115,

116,117,168

lead, 2, 4, 27, 42, 253, 290
leucine, 54
leukemia, 286
LexGrid, 252
libraries, 310, 311
library, 21, 160, 161, 183, 196, 222
license, 14
lifecycle, 8
lightweight, 42
Limits, 205
link, 151,205,260,286,290
Linux, 16
lipids, 5
Lipman, 82, 293
list, 301,312
listen, 36, 37, 263
listener, 10,37,38,49,105, 137,

138
listening, 37
listens, 36
literature, 6, 161,162,204
load, 36, 90, 91, 93, 157,193, 223,

224, 227,254
Local, 10, 14, 19, 25, 82,109,110,

156,205
localhost, 168, 169, 176, 299, 300,

313
localization, 17
location, 45, 182,194,247, 254,

257,259
lock, 231
LocusLink, 253, 258
logic,8, 19,32,48,49, 51,67, 68,

106,160,165,260
login, 176, 301,303,312, 313
low-level, 37
lung, 4, 16,288
lymphoma, 15
lysine, 54
Mac, 245
machine, 10,47,107,158, 169, 205
machinery, 1,17, 210
Madden, 82, 293
MAGE, 15, 22
MAGE-ML, 14, 15,22
MAGE-OM, 14,15, 16

330

Maglott, 293
main, 21, 37, 41, 42,46, 47, 50, 63,

78,124,193,221,241,242,256,
261,266,275

maintainability, 8
maize, 213
MALDI-TOF, 250
malformed, 95,102
MalformedURLException, 95, 98,

102
malignant, 26
Management, 6,15, 250
manager, 45, 46,175, 176, 301, 302,

303,312,313,314
manager.password, 312, 313, 314
manager.url, 312, 313, 314
manager.username, 313, 314
Map, 89, 93, 94, 99, 103, 120, 223,

225, 228, 229, 230, 240, 250,
256, 258, 260, 278

Mapping, 19
marker, 5
Markup, 10,14
match, 13, 28, 29, 34, 41, 75, 96, 97,

100, 102, 125, 126, 132, 135,
162,172,174,176,181, 191,
194,196,197,201,283,286

matches, 29, 194,212
Mathematics, 212
matrix, 29, 33, 215
maturity, 252
maximal, 144
Maximize, 48
McCurry, 23
meaing, 84
measure, 252
mechanism, 5,17, 18,19, 42, 83,

87,92,213
medical, 4,7, 20
medication, 2
medicine, 1, 2, 20, 21, 161, 249
MEDLINE, 161, 162, 183, 184
member, 314
membrane, 27
memory, 158

menu, 36, 37, 39, 40, 46, 50, 59, 69,
70,71,72, 114, 144,146,147,
236

menuBar, 147
menultem, 147
MeSH, 162
message, 29, 64, 91, 94,134, 136,

139,143,170,180,181,227,
260, 265, 309

Messaging, 10, 11, 36
Messenger, 210
metabolic, 26
metabolism, 258
metadata, 256
metathesaurus, 256, 292
methionine, 54
method, 3,4, 37, 38,45, 46,47, 48,

49,51,55,63,65,67,68,83,84,
85,86,87,88,90,91,93,94,95,
96,105,125, 129,134, 135,138,
139,146,147,157,158, 159,
169,170,178,179, 180, 181,
182,184,194,195,196,223,
225,226,227,231,262,263,
264, 265, 266, 276, 282, 283

methodology, 17,204
metrics, 252
MGED, 14,15,22
MIAME, 14
MIAPE, 17
microarray, 13, 14, 15, 250, 255,

256
middleware, 12
Miller, 82
Miner, 250
mismatch, 64
MIT, 10, 213
mkdir,311,313
MMHCC, 255, 292
modalities, 251
model, 2, 4, 6,9, 10,11, 12,13, 14,

15,19,36,160,213,250,251,
252, 256, 257, 290

Modeling, 12,13, 17,22,250
Model-View-Controller, 9, 19
modifications, 17

331

modular, 10, 250
Module, 8,250,251
modulo, 218
moiety, 53
molecular, 1,4, 13,14, 16,17, 18,

25, 26, 248, 255, 256, 257, 258,
259

molecular/cellular, 257
molecular-scale, 249
molecule, 210
Monitor, 299
Monitoring, 250
monolithic, 8
monospace, 52, 53,107, 108
Monospaced, 52, 107, 114, 146,

148, 234, 237, 268
mouse, 29, 37, 38, 245, 255, 266,

292
mouse-over, 29
mRNA, 29, 54, 106, 130,210,211,

258
multi-server, 223
multi-threaded, 223,230
multi-tier, 2
multivariate, 250
mutation, 250
MVC, 9,10,19,35, 160
Myers, 82
MyServlet, 159
MySQL, 18, 19
mzXML, 17
nam, 230
Nature, 23, 37, 53, 84,133, 205, 211
navigating, 9
navigational, 19
NCBI, 10, 21, 22, 25, 26, 27, 28, 29,

32,33,64,83,84,85,92,124,
129, 151,153,155,156, 161,
162,166,170,171,173, 177,
178, 181, 186,188,189, 190,
198, 201, 204, 205, 213, 255, 258

NCI, 6, 8, 11, 14, 15,16, 17,19,20,
249,250,253,255,256,259,
260,289,290,291,292

NCI thesaurus, 256, 292

NCICB,8, 11,14, 16,21,22,255,
259, 290, 291

nculeotides, 53
network, 6, 7, 8,156
neuro/glioblastoma, 286
neuroscience, 258
new,302, 303,314, 315
next, 311
NHS, 290
NIH, 33, 249, 258, 260, 291
NLM, 161, 162
Nobel Laureate, 1
nomenclature, 54,134, 205, 206,

207,286
non-coding, 209, 211
non-Fasta, 137
non-redundant, 26
non-static, 43
non-target, 5
non-technical, 291
normal, 5,124, 255
normalization, 14, 17
notation, 255
not-for-profit, 15
notification, 109, 275
notified, 88, 223
notifies, 10,94
notify, 88, 282
notifyObservers, 88, 93, 94, 96, 97,

98,99,100,101,228,229,277,
278, 279, 280, 281, 282, 283, 284

novel, 25
nr,65,71, 81,94, 113
n-tier, 8, 9, 20, 256
nuclear, 213
nucleic, 5, 255
nucleotide, 10, 27, 28, 33, 35, 48,

50,53,54,56,57,64,67,68,78,
79,81,83,125, 132,134,152,
209, 211, 212, 214, 221, 247, 257

nucleotides, 53,133,211
null, 49, 52, 61, 75, 76, 89, 90, 91,

93,94,95,96,97,99,100,101,
102,105,111,117, 118, 119,
121, 122, 125,126,127, 131,
132,134,135,137,138,143,

332

147, 148, 172, 173, 174, 180,
181,182,183, 185,186, 188,
189,191,192,193,198,199,
201,202,203,224,227,229,
230, 232, 234, 240, 273, 278

number, 8, 9,10, 11,14, 16, 18,20,
25,29,33,35,38,53,54,55,
104,124, 126,128,129, 131,
133, 134, 136, 137, 140, 142,
145,155,157,158,161,162,
165,211,214,217,218,243,
254, 255, 258, 260, 264, 276

nurse, 4
Object, 11,12, 14,15,19, 36, 37,

38,42,43, 46, 48, 49, 68, 86, 88,
89,90,93,94,96,99,105,120,
125, 147,159,160,166, 169,
170,171,179,181,182,223,
224, 225, 226, 228, 229, 230,
231,232,234,240,251,257,
258,260, 262, 264,265, 274,
276,282, 283, 284, 286

Object-Relational, 19
observable, 10, 88, 89, 94, 112, 120,

139, 223, 235, 240, 267, 274,
275, 277, 282, 283

observe, 88
observer, 10, 36, 88, 112, 120,121,

223, 235, 240, 263, 267, 274
Octopus, 255, 292
ODI, 290
OGSA, 12, 22
OGSA-DAI, 12, 22
OMG, 15, 22
OMIM, 152,258
oncogene, 26, 81, 286
oncology, 12
one, 2, 4, 6, 8, 11,37,41,43,48,84,

89,92,108,129,144,155,156,
159,160, 161,165,180,205,
210,212,213,221,225,230,
246, 254, 260, 282, 289

Ontologic, 8,255
ontological, 257
Ontology, 14, 15, 22, 250, 252, 253,

257, 258, 280, 292

open-source, 14, 17, 295
operating, 3
operation, 3, 4, 32, 33,45,47, 80,

84,92,95,157,181,221,223,
226,231,314

optimal, 8
optimize, 221
option, 45, 93,110, 125, 213, 214,

223, 227, 298, 299
Oracle, 19
orchestrated, 211
order, 3, 19, 21, 85, 104,167,169,

170, 178,254,263,275,276,
295,312

organ, 258
Organisation, 17
organism, 16,17, 26, 230, 240
organismal, 1
Organization, 7, 8, 21,183, 250,

256, 258, 280, 288
origin, 29
ORM, 19
OS, 16
Ostell, 293
output, 29, 32, 33, 34, 35, 125, 144,

149,151,155, 156, 157, 158,
176,177,178,186,197,203,
214,215,217,220,246,312

outputStream, 94, 95, 98, 101,102
overexpressed, 4, 290
overexpression, 4, 5
overload, 84
override, 169
overview, 20, 22
overwrite, 110, 111, 121
Pacific, 288
pack, 41, 60,72,115, 238, 263, 268
package, 35, 36, 39,41,42, 58, 70,

83,89,91,92,98,112, 129,131,
151,159,160,165,169, 172,
173,187,197,221,222,223,
224, 227, 228, 232, 233, 235,
242, 266, 276, 283, 284, 285

paint, 37, 266
painting, 37, 47, 264
Pair, 144,218

333

pane, 40,45,46, 59, 72, 114, 237
panel, 65, 66, 73, 74,105,114, 115,

116,117,176,233,234
paper, 252
paradigm, 2, 19,165
param, 120,240
parameter, 67, 68, 89, 129, 134,146,

179,180,182
paramPanel, 66, 67,73,74,116,

117,239
parent, 42
parentheses, 194,225
parenthesized, 196
parse, 55,95, 129,178,183, 242
Parsing, 130, 183, 184
participant, 252
partnership, 20, 250, 255, 290
password, 297, 301, 302, 303, 312,

314
path, 167, 168, 169, 259, 309, 312,

314
pathologic, 13
pathology, 5, 6, 13,14,18,19, 251
pathway, 4, 13, 16, 17, 250, 257,

258,260,276,277,278,286,
287,288

patient, 3, 4, 5, 7, 252, 255, 291
patient-based, 6
patient-focused, 4
pattern, 10,13, 36,194, 223, 263,

270,271,272,283,284
PDGF, 26
peak, 17
pepGene, 232, 234
peptide, 212, 215, 218, 221, 231,

232, 242, 243, 246
peptideGene, 232
PEPTIDES, 243
percent, 1
Perl, 2
personalized medicine, 2
pharmacogenetic, 8
pharmacological, 249
phase, 218,258,260, 288
phenylalanine, 54
Phillips, 23, 292

physical, 8,161,257
physiological, 17
physiology, 5
pilot, 6, 250
Pipeline, 209, 212,221,246
plant, 2
platelet-derived, 26, 81
platform, 2, 6, 11,12, 16,18, 20, 21,

81,155,158,159,258,314
platform-agnostic, 2
platform-independent, 157
Plavsic, 82
plug, 53
PMID, 162, 172, 174, 177, 181, 182,

183,184,188,191,198,201
PNG, 168,310
poly-A, 218
polyadenylation, 210
polymer, 53
polymerase, 211
polymerization, 210
Polymorphisms, 257
polypeptide, 210
Population, 250
Portability, 7
portable, 167
portal, 14,15,16,255,256,257
position, 42,46,184,257
POST, 83,155, 157,222
post-genomic, 3
post-translational, 17
precision, 4
preclinical, 161
predict, 210
predicted, 212, 214, 215, 218, 220,

221,231,232,242,243,245,
246, 247

Predicted peptides, 236
predicting, 213
prediction, 5, 10, 209, 212, 221,

231,242,246,247
predictive, 2,17
prefix, 41
pre-mRNA, 213
Presentation, 8

334

principle, 9, 10,12, 26,160, 256,
314

print, 134, 174, 181,190, 200, 214,
239, 276

PRINT_OPTIONS, 236,239
printer, 94, 95, 101,102
printing, 243
PrintWriter, 170,173,190, 200
privacy, 7, 8
private, 7, 39, 40,43, 55, 58, 59, 60,

65,67,68,69,70,71,73,74,77,
87,89,90,91,94,96,99,101,
102,103, 105,111,113, 114,
115,117, 119,120,121, 122,
123,131,132,134,135, 137,
138, 146, 147, 149, 178, 179,
181,182,184,185,187, 188,
190,191,193,195,198,200,
201,202,203,224,228,230,
232,233,234,235,236,238,
239,241,263,264,265,267,
268, 269, 273, 274, 277, 278,
283,284,285

probabilistic, 210
probabilities, 210
probability, 218
probe, 4, 255
process, 17, 26, 47,48, 84, 88, 139,

158,165,169,170,210,211,
223,225,230,251,254,284,
295,297,298,305,311,312

Processing, 204, 310
product, 12, 260
prognosis, 5
program, 3, 6,12, 20, 27, 28, 29, 32,

33,36,46,49,64,65,66,73,81,
94,105,106,115,116,137,139,
149,156,158, 169,176, 178,
180,184,186,214,249,252,
255, 259, 290, 297, 304, 307, 309

programmatic, 258
programmed, 1
Programming, 2, 16,48, 49, 252,

256, 257
Project, 1,6,11, 17,20,21,22,35,

160,172,206,249,252,255,

256,257,292,295,311,312,
314,315

proline, 54
promoter, 210, 218
prompt, 104
propagate, 36
properties, 311, 312, 313
property, 89, 90, 91, 93, 223, 224,

227,252,311,312,313
proprietary, 158
protect, 7
protected, 122, 170, 173, 188,198
protecting, 231
protection, 7
protein, 4, 5, 17, 25, 27, 28, 33, 48,

53,54,56,57,58,61,62,64,65,
68,75,76,78,80,81,82,83,
105,119,133,134,135, 152,
161,205,211,212,257,277,
280,281,290

protein-protein, 13,17, 205
Proteome, 17
Proteomics, 1,13,17,20,249, 250
Protocol, 11, 14, 155, 156, 159,250,

258
prototype, 9
Pruitt, 293
PSI-BLAST, 82
public, 7, 38, 39, 40,41, 44,45, 47,

49,51,55,58,59,60,61,62,63,
70,71,74,75,77,78,89,90,91,
92,93,96,98,99,105, 112,114,
117,118,120,121,123, 124,
126,127,131,132,135,137,
138,143,146,147,149, 173,
187, 193, 198,223,224,226,
227, 228, 229, 232, 233, 234,
235,236,239,240,241,243,
254, 255, 263,264, 265, 266,
267,268,270,271,272,273,
274, 275, 276, 277, 278, 279,
280,281,282,283,284,285

publication, 183
publicly, 14, 33,255, 256
Publisher, 36
Publish-Subscribe, 36

335

PubMed, 152, 155, 161, 162, 165,
166, 168, 169,170,171, 172,
173,174,175,176,177, 178,
179,180,181, 182,183, 186,
187,188,189,190, 193, 197,
198,199,201,204,205,206,
253,311,312,314

purine, 53
purple, 195, 198
purpose, 295
put, 120,156, 229,240, 314
putative, 26
pyrimidine, 53
QBlast, 29, 83, 84, 85, 86, 92, 93,

139,151,152
quality, 7, 14, 20
Quantitative, 250
Query, 13,15,16, 18, 26, 28, 29, 85,

93,94,97,99,100,103,144,
152, 157, 161,162,171, 172,
173,174,180,188,198, 199,
204,205,212,228,230,231,
291,292

question, 5
queue, 29, 30, 92, 221
quit, 36, 37, 38, 40, 46, 59, 71, 114,

236
radiation, 4
rational, 6
rationale, 80, 204, 212, 289
readability, 195
readable, 182,204
reader, 95,102, 131, 160,172, 173,

174,181,182,191,201,223
realm, 160
receptor, 286
refactored, 222
reference, 218
reflection, 224, 225,226
regex, 96, 97, 100, 102, 135, 195,

203, 204
region, 28, 218
register, 10, 38, 89, 90, 92, 99, 223,

224, 226, 227, 228
registering, 48
registries, 13, 251

registry, 256
regular expression, 55, 125,129,

134,168,172,183,184,194,
195,196,203

regulated, 211
regulation, 2, 17, 258
regulator, 29, 106,211
regulatory, 209
relational, 12, 19
relationship, 258
reload, 312
reloading, 310
Remember, 223
repaint, 231
repainting, 42,47, 48
Repetitive, 26
report, 147, 205, 260, 262, 263, 264,

265,270,271,272,275,276,
277,278,279,280,281,282,
286, 287, 288, 289

repositories, 155, 292
Repository, 11, 13, 14, 17, 19,33,

253,254,256,314,315
represent, 37, 50,144, 183,197, 255
representation, 6, 8, 9, 15, 17, 250,

255,257,286,288
representative, 13, 257
reproduce, 14
reproductive, 27
request, 10, 29, 84, 86, 87, 88, 93,

96,99,100,155,156,158,159,
166,169,170, 181,223,231

Requestldentifier, 86, 87,96, 99,
102,112,121

request-response, 165
required, 8, 65, 84, 104, 158,160,

164,168,259,262
requirement, 8
research, 2, 3, 4, 5, 6, 7, 8,12, 14,

16,18,20,124, 151, 153,155,
161,204,209,248,249,250,
251,253,254,255,256,259,
286, 289, 290

researcher, 4, 6, 25, 26, 204
Resource, 17, 19, 47, 151, 155, 161,

162,167,168, 204, 205, 256, 258

336

respiratory, 27
respond, 2,7, 36, 37, 38, 48, 80,

137,266
response, 5,10, 32, 80, 86,157, 158,

166,169,170
result, 1,3,45,84, 87, 88, 95,97,

98,100,101,102,111,122,146,
147,165,166,181,182,210,
221,222,225,229,231,232,
233,234,241,243,262,267,
270, 273, 276, 283

Retrieval, 161
retrieve, 16, 32,49, 51,61,75,105,

118,119,124, 125,126, 129,
135,137,151,152,157, 166,
172, 174, 178, 179, 180, 182,
188,189, 190,198, 199,200,
205,224,225,227,231,260,
263, 276, 283, 289

return, 10, 44,47, 56, 62, 63, 67, 74,
76,78,84,89,90,91,93,94,95,
96,98,99,101,102,103,105,
106,111,117,118,119,120,
121,122,123,124,127, 131,
132, 134, 135, 143, 149, 155,
169, 170, 178, 179, 180, 181,
183,186,190,191,193,196,
201,203,204,224,225,229,
230,231,232,235,239,243,
264, 269, 273, 277, 278, 279,
280,281,283,284,285

reusable, 158,160,256
reuse, 19,221,246
review, 158,160, 252
revolutionize, 2
RFC, 155,157,206
ribonuclease, 211
ribonucleoprotein, 213
ribose, 53
ribosomal, 210
RID, 29, 84, 85, 86, 96, 97, 98, 99,

100,101,102
right-clicking, 299
Riordan, 27, 81
RNA, 17, 26, 53, 54, 55, 56, 58, 61,

62,67,69,71,75,76,77,78,

105,113,119,122,123, 124,
133, 134,210,211,212

Robbins, 81
robust, 2, 4,18
role, 4, 8,12, 20, 21, 26, 36, 302,

312,313
Rommens, 81
root, 168,169, 257
routine, 151,155
Rozmahel, 82
RProteomics, 13, 17,250
rRNA, 210
RTOE, 84, 86, 96, 99, 102
Run, 32, 52, 215, 232, 234, 245,

260,261,270,271,272
Runnable, 41, 47, 48, 63, 78, 120,

121,124,126,127,143, 146,
147,228,229,230,240,241,
264,265,266,270,271,272,
273, 274, 275

Runtime, 2, 100,101,297
run-time, 2
Sahni, 23, 293
sarcoma, 26, 81
scalable, 8
scenario, 6, 12, 18
Schaefer, 23, 293
Schaffer, 82
schema, 167
schematic, 211
scheme, 10,42, 45, 260
Schriml, 293
Schuler, 153,293
science, 1, 20, 23, 81, 82,161, 204,

205, 249, 290
scientific, 1,20, 161,204
scientist, 249
scope, 7,11,210
score, 29,144, 149,218
scoring, 25, 144, 149
screen, 298, 299
Scroll, 148, 297, 306
SDK, 8
Search, 10, 25, 26, 27, 28, 29, 30,

32,33,35,64,80,82,84,85,86,
88,89,91,92,94,104, 108, 109,

337

140,141,142,144,151,161,
162,163,165,166,170, 171,
172,173,174,176,177, 178,
179,180,182,188,190, 193,
194,195,197,199,201,203,
204,231,232,260,261,262,
263,264,265,270,271,272,
276,277,278,279,280,281,
282, 283, 284, 286, 288

SearchException, 262, 265, 271,
272, 274, 283, 284

secure, 6, 8, 12
Security, 8,168, 252
self-contained, 10
self-describing, 10
semantic, 37, 255, 256
sentence, 194, 205
Sequeira, 293
sequence, 10, 13, 21, 23, 25, 26, 27,

28,29,30,31,33,34,35,39,40,
41,46,48,49,50,51,52,53,54,
55,56,57,58,59,61,62,63,64,
67,68,72,75,76,77,78,79,80,
81, 85, 92, 93, 94,104, 105, 106,
107, 108, 114, 117, 118, 119,
120, 121, 123, 124, 125, 126,
127,128,129,130,132, 133,
134,135,136,137,140,141,
142, 143, 144, 148, 149, 152,
155,161,209,210,211,212,
213,214,215,219,221,223,
230, 232, 237, 240, 243, 245,
247, 253, 256, 257, 258, 286

sequencing, 1, 2, 21, 23, 247, 249
sequential, 84
sequentially, 218
serine, 54
server, 10, 18, 19, 29, 32, 33, 64, 84,

93,94,96,99,155,156, 157,
158,159,160,161,165,166,
167, 168, 169, 172, 175, 176,
181,189,204,213,214,225,
228,231,252,267,295,297,
298,299,300,301,302,304,
305,310,312,313,315

service, 7,10,11,18, 27, 28, 29, 84,
85,86,87, 124, 139,151,158,
159,161, 204,205,276, 301, 305

service-oriented architecture, 10, 12
servlet, 19,155, 158,159,160, 165,

166,167,168,169,170, 171,
172,173,174,175,176, 178,
179,186,187,193,197, 198,
204,206,295,313

Servlet/JSP, 204
ServletException, 170,173, 187,

188,197,198
session, 156
Set, 74
setter, 87
Setting, 204, 215
Setup, 297
shutdown, 299, 304
shutdown.bat., 304
signal, 5,17, 213, 218
signaling, 26
signalling, 258
signals, 209, 210, 211, 212
signature, 5,47, 170,262
silo, 20
simian, 81
similarity, 25, 26
single-cell, 251
Single-exon, 218
Sirotkin, 293
six-frame, 28
snRNP, 213
80,183,184,188,198
SOA, 10, 11
SOAP, 11,258,292
software, 2, 3, 8,12, 16,17, 18, 20,

21,23,32,36,155,157,160,
175,206,247,252,256,292,
295,297,304,314,316

Solaris, 16
solution, 8, 19,205
source, 14, 17, 35, 36, 37,129,160,

183,205,250,254,255,256,
258, 278

Souvorov, 293
space, 2, 21,42

338

span, 162
specimen, 251
spectra, 13
spectrometric, 17
spectrometry, 17
spectrum, 2
speed, 7,25
splice, 210, 213, 218
splicing, 211,212
springboard, 289
SQL, 19,254
src, 35, 310
stage, 64,106,140
staging, 14
standard, 3, 5,10, 11,15, 17,18,81,

155,160,169,184,251,254,
256, 292

standardization, 3, 252, 256
standardize, 17
Standards, 11, 17,19,253,256,292
standards-based, 6, 10,14
Starchenko, 293
start-up, 139,140
State, 3, 21, 68, 170, 260, 262, 265
statement, 92, 226
States, 249
static, 39,41, 43,47, 55, 58, 59,62,

63,65,68,70,71,77,78,87,89,
90,91,92,93,99,103,113,123,
124,131,132,134,135,158,
184,187,188,193,195, 198,
224, 225, 226, 227, 228, 233,
234,235,236,241,243,264,
266, 267, 275, 277, 283, 285

statistical, 6, 13,17, 81,157, 250
statistics, 161,250
status, 84, 85, 94, 97, 98, 100, 101,

109,139,140,141,142, 143,
157,223,235,260,265,275,
282, 284, 288

statusBar, 263, 265, 267, 268, 274
step-by-step, 36
step-wise, 32
stimuli, 5
strand, 210,213,217,218
Strategic, 250, 252, 290

Strategy, 84, 204, 254
stratification, 5
streamline, 6
streamlining, 23, 292
strict, 7
String, 39, 41, 43, 44, 45, 47, 49, 51,

52,55,58,61,62,63,65,68,70,
71,73,75,76,77,78,89,90,91,
93,94,95,96,97,99,100,101,
102,103,105,111,113,115,
117,118,119,120,121,122,
123,124,126,127,129,131,
132,134,135, 137,138, 143,
146, 147, 148, 149,172, 173,
174,179,180,181,182,183,
184,185,186,187,188, 189,
190,191,192,193,194,195,
196,198,199,201,202,203,
224, 227, 228, 229, 230, 232,
234,235,236,241,243,254,
262,266,267,270,271,272,
273, 275, 278, 283, 284, 285, 302

StringBuffer, 94,97,100, 103,105,
117,120,121,131,147, 148,
171, 173, 178, 180, 181, 182,
185,188,189,190,191, 193,
194,195,198,199,200,201,
202, 203, 230,243, 264, 265,
270,271,272,273,274,276,
277,278,279,280,281,282

stringency, 64
structural, 26, 209
structure, 20, 21, 26, 28, 32, 35, 87,

88, 167,168,174,175,209,213,
215, 222, 247,250, 261, 310, 311

Struts, 19, 21
subclass, 42
sub-components, 12
submission, 29, 84,141, 250
submit, 32, 33, 37, 83, 92, 104, 108,

115, 124, 166, 170, 172, 237, 250
sub-optimal, 213
Subscriber, 36
sub-serve, 14
subst, 103, 195,196,204
substitute, 196

339

substitution, 196
substrate, 255
substring, 52,61,75,118,119, 121,

127,132,134,135,185, 186,
191, 192, 193, 196, 202, 203, 243

sub-strings, 194
subsumed, 258
sugar, 53
Sun Microsystem, 158,159
super, 40, 42,44, 59, 63, 71, 91, 92,

114,122,225,227,233,236,
263, 267, 282, 284, 285

superclass, 41,42,44
superfamily, 26
surgical, 14
survival, 26
susceptibility, 2
susceptible, 2
Suzek, 153,293
SWING, 16, 21, 32, 36, 38, 39,41,

42,43,45,58,70,80,83,112,
233, 235, 261, 262, 263, 264, 267

SwingBlast, 32, 34,35,36,37, 39,
41, 43,45, 46, 48, 49, 50, 53, 58,
63, 64, 69, 70, 80, 81, 83, 86, 88,
93,103,104,106, 108, 112, 113,
124,126,127,132,134, 136,
137,139,141,143,149,152,
212,221,222,232,246,315

swingBlastMenu, 40, 46, 59, 71, 72,
114,236

SwingCaBIO, 261, 263, 266, 267,
275,282

SwingGenscan, 221, 222, 235, 236,
239,240,241,242,243,244,
246, 247

SwingGenScan:,221
Swiss-Prot, 152, 254
switch, 61,76, 119
symbol, 48, 205, 260, 286
synchronization, 231
synchronize, 230
synchronized, 97, 99,100, 224, 226,

229,231,265,274
Syntax, 254
synthesis, 17, 210

synthesize, 210
system, 3, 5, 7, 10,13, 14,17,19,

37, 38, 60,74,76, 83, 84, 89, 90,
91,92,93,97,99,103,117,120,
125, 126,127,140,161, 181,
182,189,190,199,200,223,
224, 227, 228, 229, 239, 250,
251, 275, 283, 306, 309, 314, 315

systematic, 17, 255
tag, 129,160,162, 184,195,204,

254,311,314,315
target, 26, 254, 257, 260, 277, 278,

279,281,311,312,313,314
targeted, 257
TATA, 213,218
Tatusov, 293
Tatusova, 293
TAX, 288
Taxol, 288, 289
taxon, 257
Taxus, 288
TBLASTN, 28, 64, 68, 78
TBLASTX, 28, 64, 67, 68, 78
TBPT, 6, 13, 14,19
TCP/IP, 156
technical, 291
technological, 21,289
technologies, 2, 3, 4, 6, 8, 10, 11,

14,21,155,158,160,165,204,
249,251,253,258,260,289,
291,295

technology, 1, 18,19, 20,158, 204,
206, 257, 289, 290

technology-based, 159
telnet, 156
template, 210
Terminal, 218
termination, 210, 218
terminologies, 12
terminology, 15,42, 160
terms, 18, 84, 85, 161, 162, 180,

193,194,195,197,203,204,
210,211,257,258,260,280

testimony, 290
text, 7, 11, 14, 37, 38, 39, 46, 48, 49,

50,51,61,62,63,75,76,78,

340

104,105,106,109,112, 118,
125,126,127, 128,129, 132,
134,135,137,138,143, 147,
156, 170,173,178,190,194,
195,196,200,204,215,232,
240,241,254,260,263,264,
265,277

textArea, 146, 147, 234, 235
thale cress, 2
therapeutic, 2, 5, 257, 258, 260,288,

289
therapies, 249
therapy, 2, 5, 15,258,259
this, 295, 297, 300, 301, 302, 306,

307,309,312
thoracic, 4
thread, 37, 47, 48, 90, 120, 127, 147,

221,223,225,229,230,231,
241,264,265,266,271,272,
273,274

threonine, 54
threshold, 55,144,214
throw, 89, 90,95,96,98, 99,101,

102,131,170,189,224,225,
227,229,231,284

Throwable, 91, 121, 122, 193, 227,
228, 229, 284, 285

thymine, 53, 54
Tiles, 19
time, 297, 306
tissue, 6,13, 18,19, 251, 258, 290,

291
Tissue Banks, 6, 251
TITLE, 170, 171, 173, 178, 187,

190, 198,200,201
token, 231
Tomcat, 160,165, 169,175,176,

204, 258, 295, 296, 297, 298,
299,300,301,302,303,304,
305,312,313,314,316

Tool, 10, 12, 13, 14, 17, 19, 25, 82,
151,165,175,250,255,301,
302, 306

Toolkit, 12, 32,41, 60,72,115, 238,
264, 268

Tools, 6,250, 251

toxicity, 5
track, 94, 231
transcript, 211
transcription, 13, 17, 210, 211
transcriptional, 212
transcriptomics, 249
transduction, 17
transfer, 210
transform, 10,21,254
transformation, 26, 254
transforming, 160, 254
transition, 210
translated, 28,211,212
translation, 17, 162,210
Translational, 4, 12, 212, 250, 254,

259
transmembrane, 29, 106, 211
Transmission, 156
transparent, 8, 9, 85, 221, 225, 231
transport, 27, 254
Transportation, 254
trap, 181
TrAPSS,250
treatment, 2, 5,7, 210, 249, 255,

257, 265, 288, 290
tree, 257, 288
trend, 4
Trial, 6, 250, 257, 258, 260, 279,

280
triggered, 38, 48
triggering, 37
trimming, 129
tRNA, 210
true, 40,41, 46, 59, 60,67, 68, 69,

71,72,73,77,90,95,101,114,
115,117, 118,123,126, 132,
135,137,143,147,189,224,
225,226,228, 234, 236, 237,
238,268

truncated, 157
try,61,75,76, 90,91,93,94, 95,

96,97,98,99, 100,101, 102,
103,113,119,120,125, 126,
131,132,135,143,181,182,
189,193,199,200,209,224,
228,229,230,240,241,265,

341

266,270,271,272,274,275,
277,278,279,280,281,283,
284, 303

try-catch, 170, 181
tryptophan, 54
tumor, 13, 14, 26, 251
tutorial, 81
tyrosine, 54
UDDI, 11
UI,9
UML, 12, 33,34, 84, 86,258
uncompress, 307
ungapped, 25
UniGene, 152, 153, 254, 258, 260
unique, 84, 85, 162, 214, 218, 231,

258
UniSTS,254,292
unit, 257
Universal, 11
University, 212
Unix, 158,315
unorganized, 10
unzip, 259
unzipping, 307
upload, 81
upper-case, 205
uracil, 53
URI, 167
uridine, 54
URL,8, 15,83,95,98, 101,125,

129,131,157,166,168, 169,
171,172,173, 176, 180, 181,
182, 187,189,191,198, 199,
201,205,228,312,314

URLAPI, 83, 85
usage, 161
USB,38
User-input, 180
user-supplied, 178, 188
valid, 33, 63, 80, 129, 131, 132, 134,

135,160,231,261
validate, 4, 9
validation, 18,132,133, 134,136,

179,180,291
validity, 134
valine, 54

variable, 43,178, 180,254
VCDE, 252
vendor, 315
Venter, 23
version, 12, 25, 39,41,43,44, 58,

63, 64, 69, 70, 83,103, 104, 106,
112,113,126,127,137,139,
143,156,170,171,172,173,
176,178,179,186,187, 193,
197,221,222,235,259,306,
314,315

vertebrate, 81,213,249
vertical, 48, 50
veterinary, 161
VI, 249
Virtual, 47,158, 169
virus, 26, 81,161
visibility, 195
visual, 9,19, 250
visualization, 7,13, 17,18, 35, 250
visuahzing, 13,14, 16,18
vocabularies, 3,11, 14, 252, 257
Vocabulary, 19, 20,22, 162, 252,

253, 256, 258
void, 38, 41, 45, 47, 49, 51, 59, 60,

61, 63, 67, 68, 69, 71, 74, 75, 77,
78,89,90,91,105,111, 114,
117,118,119, 120,121, 122,
123,124, 126,127, 135, 137,
138,143,146,147, 169, 170,
173,188,193,198,200,224,
226, 228, 232, 233, 234, 236,
239,240,241,263,264,265,
266,267,268,270,271,272,
273, 274, 275, 276, 277, 278,
279,280,281,282,284

voluntary, 250
von Eschenbach, 250
v-sis, 26, 81
Wagner, 153,293
WAR, 168,169, 295, 310, 311
warehouse, 254
warn, 132,134, 136
Warzel, 23, 292
Watson, 1

342

web, 2, 6, 7, 8, 10,11, 12,14, 15,
16,17, 18,19,129,155, 156,
158,160,162,166,167, 168,
169,204,205,214,258,295,
296,299,301,304,310,311,
312,313,314

web.xml, 310, 311
web-based, 7, 18,19, 25, 28, 155,

165
WEB-INF, 168, 311,313
webpage, 177
Webserver, 299, 300, 302
website, 8, 15, 17,21,125, 159,

160,161,175,205,206,250,
259, 286, 306, 309

well-defined, 167
well-known, 288
well-structured, 252
Wheeler, 293
widget, 63, 137
wild-card, 288
wildcards, 36
window, 37,41,42, 43,48, 60,72,

115,139,144,221,238,246,
299, 303, 305

Window Adapter, 147
Windowing, 32
Windows, 16,245,299,309
Wizard, 297
Workspace, 6, 13, 250, 251, 252
worm, 2
wrap, 85, 158
wrapped, 42, 105,129
write, 32, 39, 55, 80, 95, 101,102,

125,170,180
WSDL, 11
WWW, 21,155, 156,253
XHTML, 156
XML, 10, 11,12,97,98, 100, 101,

103,144,145,156,168,205,
254,258,310,314

XML-encoded, 11
XP, 16
Yaschenko, 293
zebrafish, 2
zero, 54
Zhang, 82
Zielenski, 82

